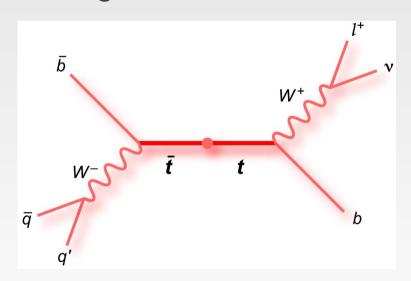
Inclusive ttbar cross-section in µ+Jets channel using data driven techniques

A.Khan¹ M.Mulders² E.Palencia² <u>P.Symonds</u>¹ J.Thom³ Y.Weng³

¹Brunel University, London, UK ²CERN top group ³Cornell University, Ithaca, USA

IoP Talk: April 3rd, 2012

Outline

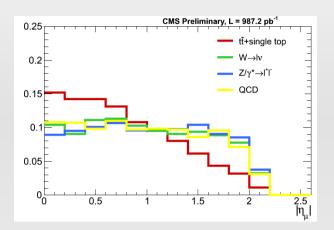

Disclaimer: Results in this talk are still preliminary!

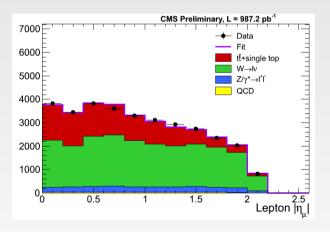
- Introduction
- Event Selection
- Analysis Method (selection & background estimation)
- Systematic Uncertainties
- Neyman Construction from pseudo experiments to obtain final σ_π result with full uncertainty
- Conclusions

Introduction

Motivation:

- Heaviest particle and therefore tightly coupled to the Higgs
- Provides good test of standard model
- Background to various BSM signals

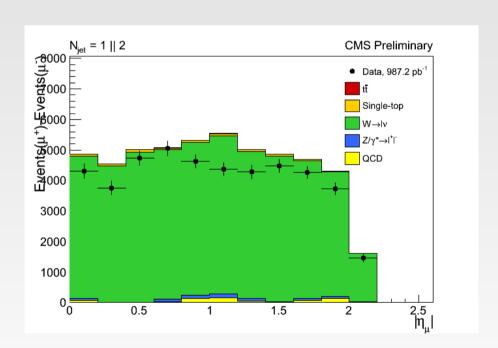


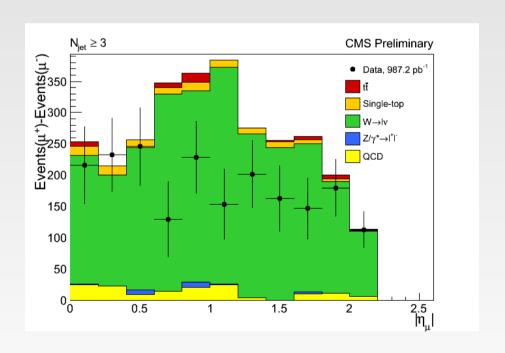

- ttbar pairs are produced 90% of the time through gluon-gluon fusion
- Decay rapidly ~100% to a W and a b quark
- Theoretical σ_{tt} ~ 158 pb

Analysis Method

- Full PF event reconstruction used
- Cross section measured by means of maximum likilihood fit of |η_{lepton}| distribution.
- Fit parameters are normalisation factors
 N_{sig}(N_{tt}+N_{sing-t}), N_W, N_Z, N_{QCD}. Starting
 values taken from MC estimation.
- Signal template from MC
- Data driven BG templates:
 using BG enriched regions

Event Selection

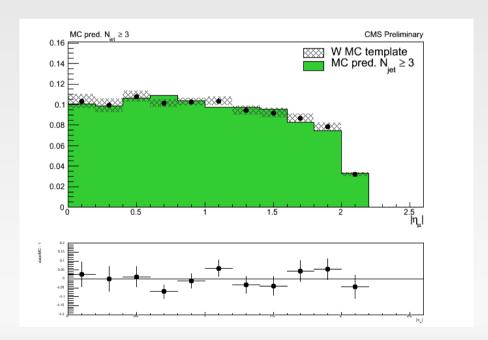

- Muon: HLT_Mu30 (987.2 pb⁻¹)
- 1. Exactly 1 high p $_{_{t}}$ (> 35 GeV), isolated muon (<0.125), $|\eta_{_{u}}|$ < 2.1 & mu ID
- 2. Loose muon veto ($p_t>10$ GeV, $|\eta_u| < 2.5$, rellso < 0.2)
- 3. Loose electron veto (p_t>15 GeV, $|\eta_e|$ < 2.5, rellso < 0.2)
- 4. Jet selection: require >=3 jets (loose ID, p_t >30 GeV, $|\eta_i|$ < 2.4)


Cut Flow:

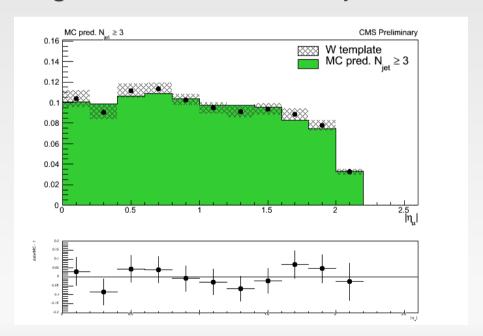
2011 MC Events scaled to 987.2pb ⁻¹								
# Events	$t\bar{t}$	W+jets	Z+jets	QCD	Single-t	Total MC	Data	
Initial	155484	30913180	3008985	83595406	83851	1.17757e+08	46976284	
trigger and PV	24496	3825206	601544	3985165	6991	8.4434e+06 (7.1702)	14817498 (31.5425)	
1==mu	14910	2209137	263201	17812	4476	2.50954e+06 (29.7219)	2558884 (17.2693)	
loose mu veto	14240	2209105	110793	17706	4401	2.35624e+06 (93.8917)	2394181 (93.5635)	
loose e veto	12794	2208666	110186	17529	4246	2.35342e+06 (99.8801)	2390848 (99.8608)	
\geq 3 jet	9620	17889	2221	317	1047	31094 (1.32123)	31955 (1.33656)	

W+Jets Template Extraction

- pp collisions produce more W+ than W-
- Use |η|+| |η|-| and then correct to get the charge sum distribution
- Charge subtracted distributions done in 1||2 jet bin:

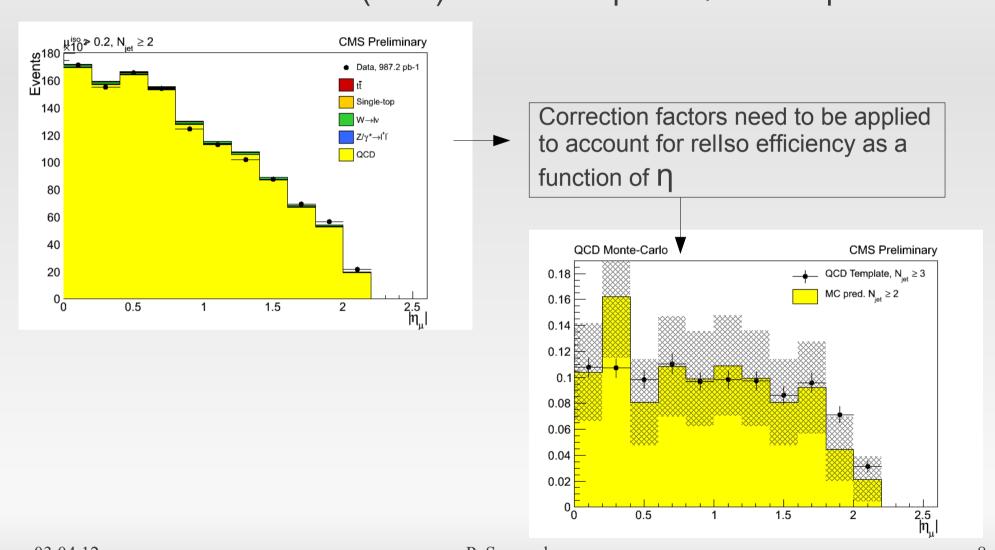

Gives a relatively pure W+Jets sample

W+Jets Template Extraction

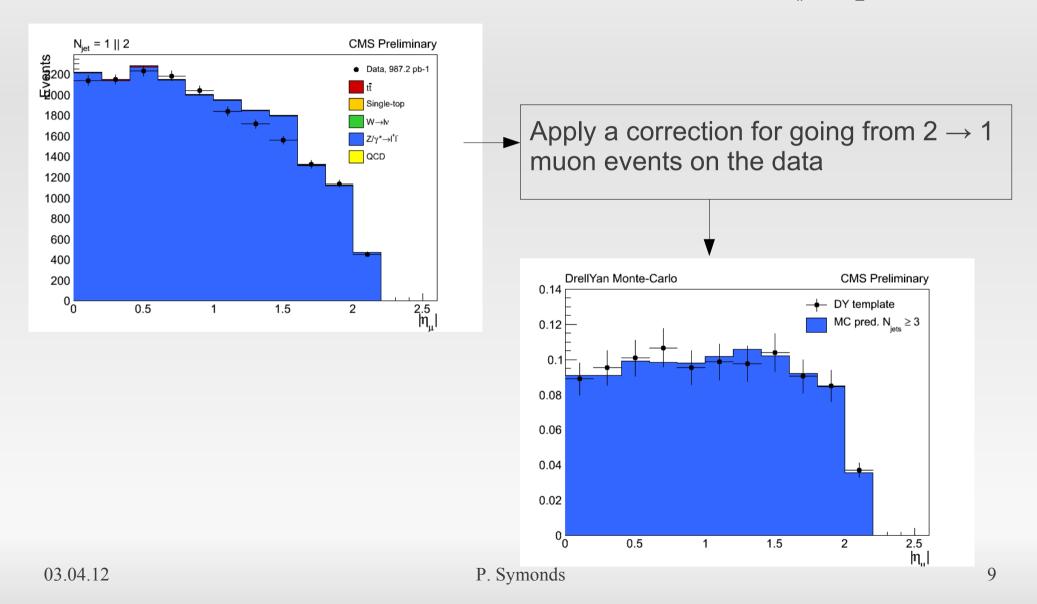

Correction factors required to account for different |η| shapes for I+ and I-

Multiply charge subtracted (1||2 jets) by correction factors calculated using the MCFM package @NLO

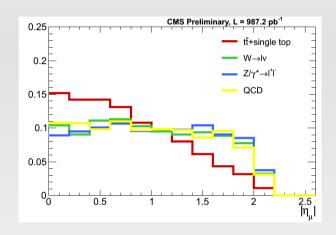
Closure Tests Performed On Monte Carlo:

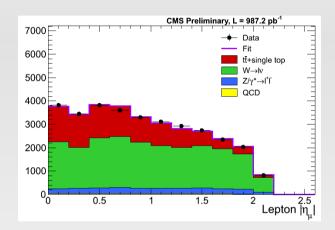


Applying correction factors to data gives our data driven template:


QCD Template Extraction

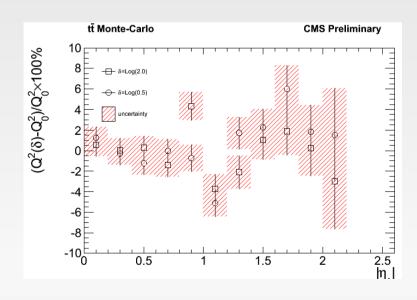
Invert the rellso cut (>0.2) to obtain a pure QCD sample

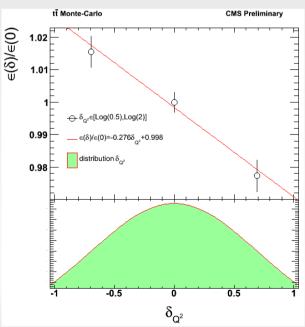

Z+Jets Template Extraction


Select opposite charge di-lepton events with invariant mass |m_{||} - m_z| < 15 GeV

Template Fit

Perform a binned template fit method on the **normalised** $|\eta_i|$ templates where the likelihood function is maximised:

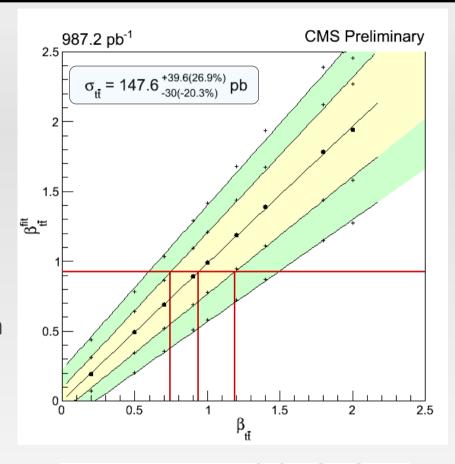

- Constrain N_{QCD} to within 100% and N_z/N_w to within 5% of expected MC values
- From this extract the number of signal events and get the cross-section:


$$\sigma_{tar{t}}^{ extit{fit}} = rac{ extit{N}_{tar{t}}^{ extit{fit}} - extit{N}_{ extit{stop}}^{ extit{MC}}}{\epsilon_{tar{t}}\mathcal{L}}$$

$$\sigma_{tt}$$
 = 145.6 ± 8.2 pb
 $\rightarrow \beta_{fit}$ = $\sigma_{fit}/\sigma_{theory}$ = 0.92 ± 0.05

Systematic Uncertainties

- Since BG templates extracted from data only need to account for theoretical/experimental uncertainties and statistical limitations.
- Other uncertainties are applied to the signal
- For JES: vary the jet pt by $\pm 1\sigma$ according to η and pt dependent corrections
- Scale up/down MC samples used for Q² and matching threshold
- 30% error assigned to single-top xs and 4% to lumi



Full Neyman Construction

- Systematic uncertainties enter the pseudo experiments.
- Throw 100,000 experiments for various values of β_{tt} [0.2,2.0].

For each experiment:

- Smear BG templates within statistical (+correction factor) error (corresponds to systematic) for each bin.
- For Signal (ttbar & single-top) smear shape within statistical error (MC). Then throw efficiency within systematic uncertainty. Systematics have no/little effect on |η| shape.
- Throw a Poissonian about each bin for templates (stat.).
- We then have the pseudo data (=pseudo BG + pseudo signal) and the pseudo BG templates to perform the likelihood fit.

$$\sigma_{t\bar{t}} := \sigma_{t\bar{t}}^{\mathrm{nominal}} \times \left(\beta_{t\bar{t}} + \Delta_{t\bar{t}}^+ - \Delta_{t\bar{t}}^-\right)$$

Conclusions & Future Plans

- Analysis uses fully data driven techniques to extract the background templates
- Obtiained a cross-section measurement within SM prediction
- Sensitivity of measurement could be improved with increased statistics and rebinning
- Next, plan to use similar techniques to reconstruct the MET distribution
- Would then be interested to look at ttbar events with large MET

Thanks for your attention!

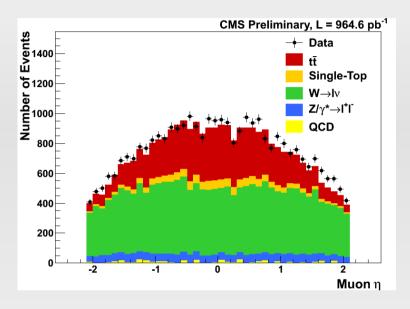
Backup

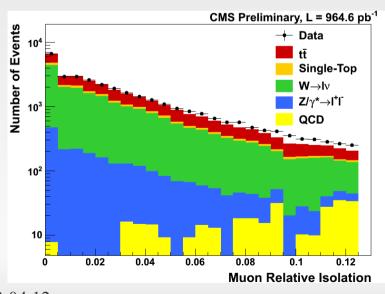
Back up: Samples & Triggers

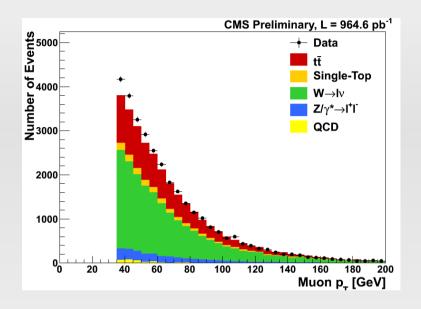
Data:

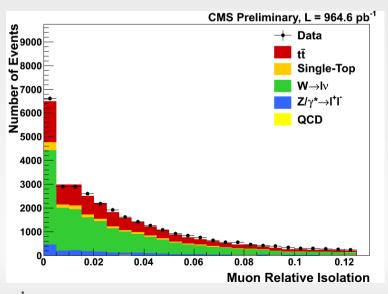
```
/SingleMu/Run2011A-May10ReReco-v1 up to 163869
/SingleMu/Run2011A-PromptReco-v4 165088-167284
```

MC Samples:

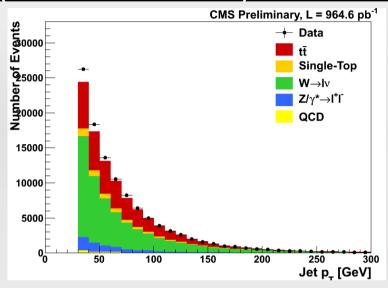

```
/TTJets_TuneZ2_7TeV-madgraph-tauola/Summer11-PU_S4_START42_V11-v1
/WJetsToLNu_TuneZ2_7TeV-madgraph-tauola/Summer11-PU_S4_START42_V11-v1
/DYJetsToLL_TuneZ2_M-50_7TeV-madgraph-tauola/Summer11-PU_S4_START42_V11-v1
/QCD_Pt-20_MuEnrichedPt-15_TuneZ2_7TeV-pythia6/Summer11-PU_S4_START42_V11-v1
/T_TuneZ2_t-channel_7TeV-powheg-tauola/Summer11-PU_S4_START42_V11-v1
/Tbar_TuneZ2_t-channel_7TeV-powheg-tauola/Summer11-PU_S4_START42_V11-v1
/T_TuneZ2_s-channel_7TeV-powheg-tauola/Summer11-PU_S4_START42_V11-v1
/Tbar_TuneZ2_s-channel_7TeV-powheg-tauola/Summer11-PU_S4_START42_V11-v1
/T_TuneZ2_tW-channel-DR_7TeV-powheg-tauola/Summer11-PU_S4_START42_V11-v1
/Tbar_TuneZ2_tW-channel-DR_7TeV-powheg-tauola/Summer11-PU_S4_START42_V11-v1
```

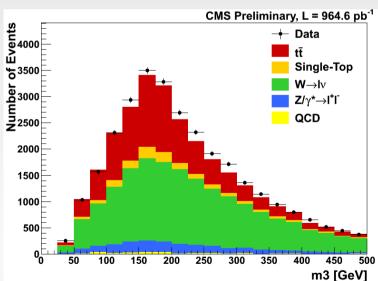

Triggers (same as sHyFT group):


HLT Mu30 v(1-5)

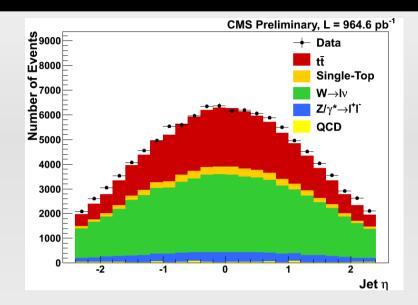

Control Plots (µ kinematics)

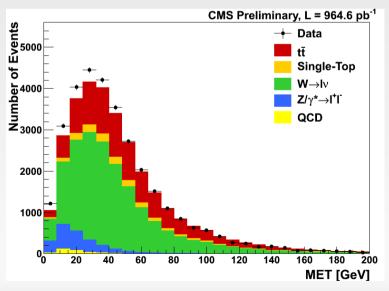
(After event selection)

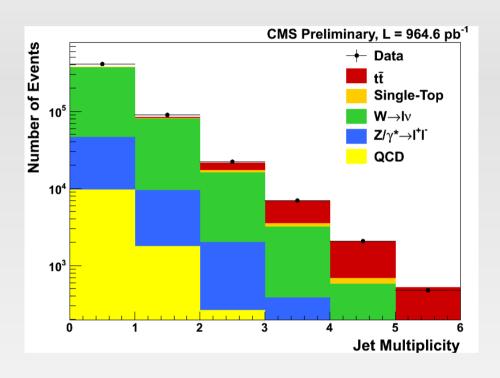




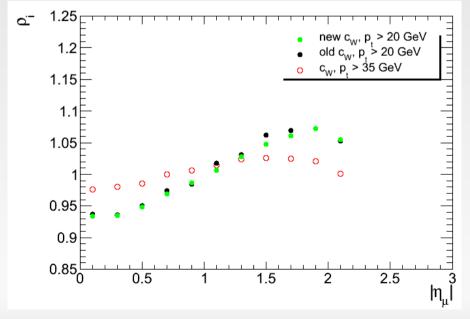
03.04.12 P. Symonds 16


Control Plots (Jet/MET kinematics)


(After event selection)

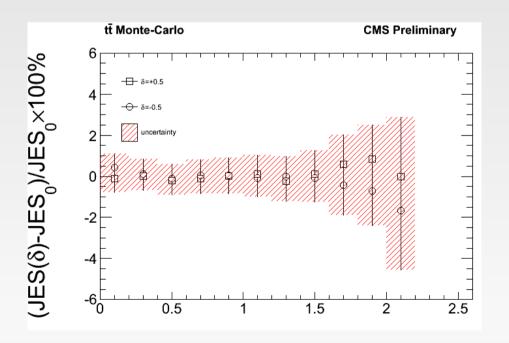

Invariant mass of 3 leading jets 03.04.12

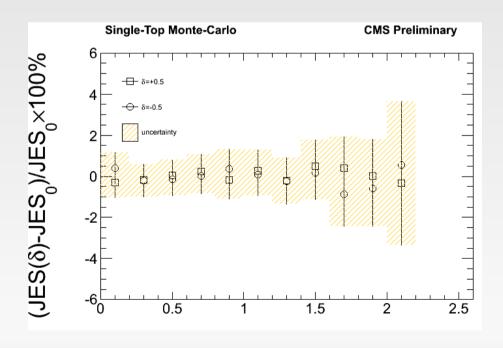
P. Symonds


Backup: Jet Multiplicity Plot

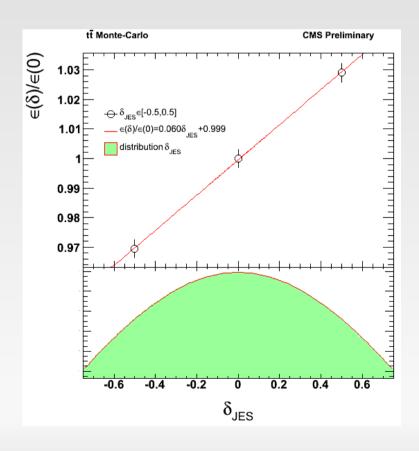
W+Jets correction factors

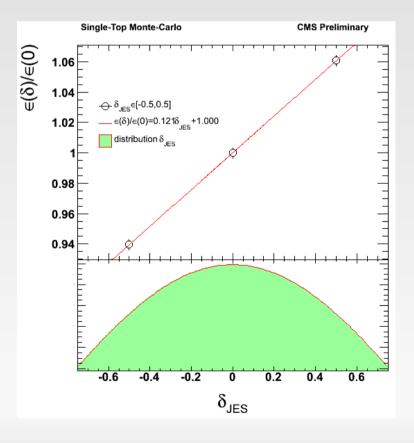
 $c_{W}^{i} = \left(1 + \frac{2}{R_{i} - 1}\right).$


- Use bin (i) wise correction factors (c_W) for this: $\Sigma_{\mu}^i = c_W^i \times \Delta_{\mu}^i$.
- Construct correction factors as:
- Where: $R_i = R \frac{\varepsilon_{W^+}}{\varepsilon_{W^-}} \left(\frac{d\tilde{\sigma}_{W^+}}{d|\eta_{\mu}|} \right)_i \left(\frac{d\tilde{\sigma}_{W^-}}{d|\eta_{\mu}|} \right)_i^{-1} =: R \rho_{\varepsilon} \rho_i$
- R = 1.435 (NNLO) & ρ_{ϵ} = 0.98 for p_{t} >20 & 0.85 for p_{t} >35

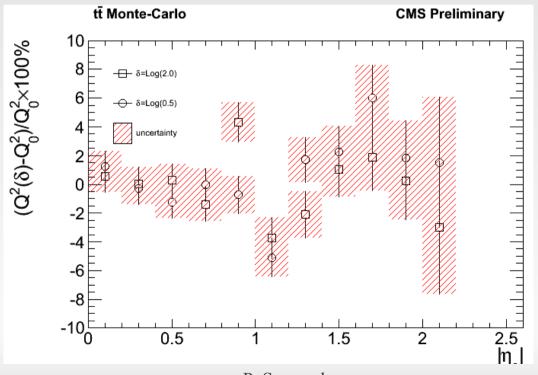


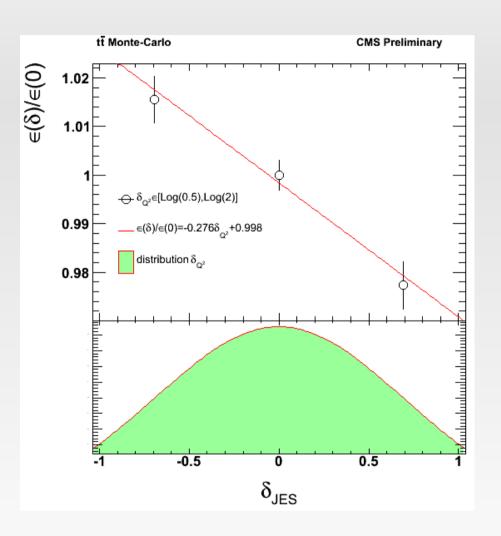
JES Uncertainty


- A strength parameter is chosen arbitrarily such that ±1σ corresponds to ±0.5.
- This parametrises the error.
- In both top and single top there is little effect on the shape.



JES Error: Efficiency Effect

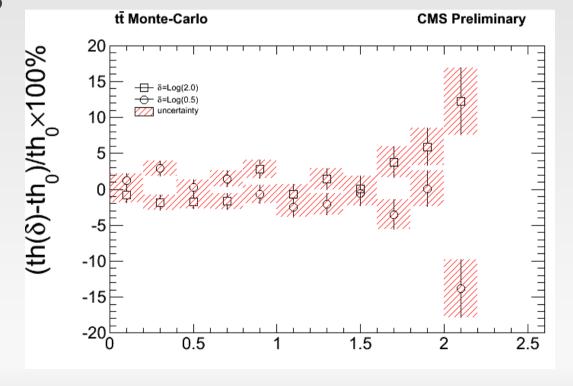

- A linear function can be fit to describe the JES errors' effect on the ttbar and single-top selection efficiencies.
- $\epsilon(0)$ corresponds to the nominal efficiency.


Q² Uncertainty

- TTjets_TuneZ2_scaleup_7TeV-madgraph-tauola/Summer11-PU_S4_START42_V11-v1/AODSIM
- Ttjets_TuneZ2_scaledown_7TeV-madgraph-tauola/Summer11-PU_S4_START42_V11-v1/AODSIM
- Parametrise this error with ±1σ [log(0.5), log(2)]
- ttbar shape within statistical errors of fluctuations

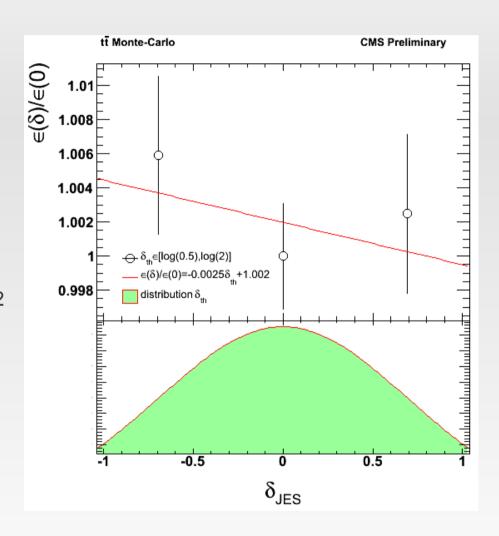
Q² Efficiency Effect

- We can see what effect the Q² uncertainty has on the ttbar selection efficiency
- A linear function is used to describe it's effect.

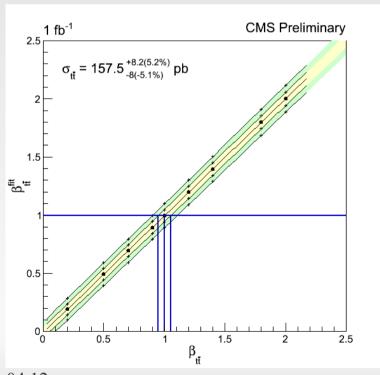


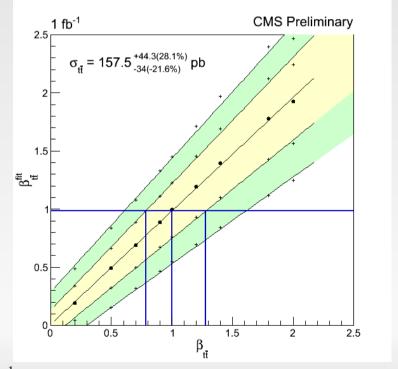
Matching Threshold

- TTjets_TuneZ2_matchingup_7TeV-madgraph-tauola/Summer11-PU_S4_START42_V11-v1/AODSIM
- TTjets_TuneZ2_matchingdown_7TeV-madgraph-tauola/Summer11-PU_S4_START42_V11-v1/AODSIM
- Also parametrise this error with ±1σ [log(0.5), log(2)]


ttbar shape within statistical errors of fluctuations apart

from at large η?


Matching Threshold Efficiency Effect


- We can see what effect the matching threshold uncertainty has on the ttbar selection efficiency
- Linear function doesn't fit so error doesn't have very much effect on efficiency compared to Q² and JES.

Sensitivity of Measurement (1/fb)

- Can measure the sensitivity using β_{tt} = 1 and extrapolate accross the Neyman plot to ±1 σ .
- With stats only get ~ ±8 pb (5.1%) uncertainty.
- For syst+stat we get +44.3 pb (28.1%) -34.0 pb (21.6%)
- Systematics still dominated by statisical uncertainty on data driven templates.

03.04.12 P. Symonds 26

Systematic Breakdown

Source	$\beta_{t\bar{t}}^{fit}(-\sigma) \text{ pb (\%)}$	$\beta_{i\bar{i}}^{fit}(0)$	$\beta_{t\bar{t}}^{fit}(+\sigma) \text{ pb (\%)}$
W+jets Temp stat.	-20.6 (-16.4 %)	0.797	20.6 (16.4 %)
DY Temp stat.	-3.2 (-2.6 %)	0.796	3.2 (2.6 %)
QCD Temp stat.	-0.5 (-0.4 %)	0.796	0.5 (0.4 %)
All BG stat.	-20.8 (-16.6 %)	0.796	20.9(16.7 %)
JES	-3.6 (-2.9 %)	0.797	4.0(3.2 %)
Q^2 scale	-19.5 (-15.5 %)	0.799	27.7(22 %)
matching threshold	-0.2 (-0.2 %)	0.795	0.2(0.2 %)
luminosit	-5.8 (-4.6 %)	0.796	6.2(4.9 %)
single top xsect.	-7.0 (-5.6 %)	0.796	6.9(5.5 %)
stat.	-8.1 (-6.5 %)	0.797	8.2(6.5 %)
syst. + stat.	-31.2 (-24.8 %)	0.8	40.0(31.7 %)