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The Energy and Intensity Frontier

= Symmetry magazine, October 2009

At the Energy Frontier, for instance, we use high-enerqgy colliders, such
as the Tevatron and the Large Hadron Collider, to search for new
particles and forces that provide information on the makeup of matter
and space. At the Cosmic Frontier, we scan the heavens with particle
detectors and telescopes to learn more about cosmic rays, dark
matter, and dark energy, and to understand the role they have played
in the evolution of the universe.

The strategy of research at the Intensity Frontier is to generate the
huge numbers of particles needed to study rare subatomic processes,
such as the transformation of one type of neutrino into another or the
not-yet-observed conversion of a muon into an electron. This requires
extreme machines, multi-megawatt proton accelerators that produce
high-intensity beams of patrticles.

= B Factories?
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State of the Art

= CERN
= Collisions at 7 TeV Centre of Mass
= CNGS beam for neutrinos

= Fermilab
= Tevatron ring switched off September 2011

= Fermilab Booster (8 GeV) and Main injector (150 GeV) used for
neutrino experiments

= KEK
= Neutrino beamline operated at 30 GeV before the earthquake
= Multiphysics facility for spallation neutrons and ADS
= KEKB - B-factory undergoing upgrade

= SNS, PSI, ISIS, TRIUMF, LANSCE
= SLAC, LEP, HERA



M Where Next?

= The proton road
= LHC upgrades
= The electron road
= B “Super Factories”
= Linear Colliders
= The neutrino/muon/rare decays road
= Project X and JPARC upgrades
= |SIS, ESS
= Neutrino Factory
= Muon Collider



Proton Machines
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e+e- Machines
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Super Large Hadron Collider (SLHC)

3 MeV 50 MeV 102 MeV 160 MeV

= New injector
= |ncreased current

= |Improved injector
systems

" = Tighter final focus
= Factor 4-10

improvement in
luminosity

¥ = Improved statistics for
physics




Large electron Hadron Collider

= Probe proton structure function
using electron collisions

= 60 GeV electron ring (baseline)
= |n the LHC tunnel
= Bypass existing experiments

= Linac, then Energy Recovery '
Recirculating Linac

= Linac option has high power
requirements

= Recover it by reverse wakefield ﬁ‘ \
o Prototype at J_Lab’ Daresbury’ 60-GeV recirculating linac

KE K with energy recovery s i
SPS v
’
ATLAS CN(;\S\
| 2005 I

straight
linac



The Proton road

Proton collider energy is limited by ring circumference

= Cost ~ tunnel length

= Energy ~ tunnel length

= Critical technology is superconducting magnet field strength
= LHC is at current financial limit?

Rate limited by injection chain

= Can detectors handle more rate?
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Super B Factories

Main
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Lepton Colliders

= | epton colliders for particle physics
= Monochromatic collisions for Higgs/SUSY factory
= Two technoligies
= Superconducting “ILC”

= Normal Conducting “CLIC” 12



CLIC
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= Superconducting option uses lower frequency RF
= 1.3 GHz standing wave
= Normal Conducting has higher power requirements
= Low duty factor => short compact bunches
= Generate power with drive bunch and travelling wave
= High frequency 12 GHz => smaller losses per energy gain

e~ injector,

e’ injector,
2.86 GeV

2.86 GeV




M Warm vs cold

® Normal Conducting

" Small stored energy => strong
wakefields

= Generation of high peak RF power
= Gradient ~ 150 MV/m

® Superconducting

long pulse => low peak power

larger stored energy => low
wakefield

very long pulse train => feedback
within train

SC structures => high efficiency

Gradient limited < 40 MV/m =>
longer linac
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The Electron Road

Electron collider energy is limited by linac length
= Cost ~ tunnel length
= Critical technology is available RF gradient

Electron collider luminosity can be improved by RF field and
final focus strength

= Final focus improved with stronger magnets
= Current is limited by RF technology
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Project X

Neutrinos
2 MW

Recycler /
Main Injector
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= Prototype ILC SC RF technology

= Accumulator/compressor upgrade possible for muon accelerator
16
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Project X - Site Map
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Project X - Hardware R&D Program

= Goal is to mitigate risk: technical, cost, and schedule

= Primary elements of the R&D program:
= Development of front end including wide-band chopper
= Development of an H- injection system
Superconducting rf development
= Cauvities, cryomodules, rf sources — CW to long-pulse
= Development of partners and vendors
High Power targetry, including ISOL targets
Integrated facility design
= Physics performance requirements
= reliability analysis
= Upgrade paths
= Test Facilities

= Goalis to complete R&D phase by 2016
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W ISIS Upgrade Path

1. upgraded ISIS injection

2. new 3.3 GeV booster
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Neutrino Factory - Physics
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= March 2012 - Discovery of 6,

= Helps us design an optimal Neutrino Factory
= Mass hierarchy determination
= CP violation
20



1.1 km

Facility -

February 2012
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= Baseline swap?
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Facility - April 20127
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= 102! neutrinos per year @ 10 GeV
= Challenge to capture muons
= RF capture and ionisation cooling
= Challenge to accelerate quickly
= Recirculating linac or FFAG 22




Muon Collider
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= Muons are born as tertiary particles
= Muon lifetime ~ 2.2 us
= 1 km mean path at 250 MeV

= Demanding cooling scheme required

= Magnet and RF challenges 53



The Muon Road

* A flexible scenario with physics at each stage:
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Muon collider Comparison to CLIC

[T e'e
Luminosity 10%* em?sec™! 4 2
Detectors 2 1
5% at IP = o, mm 5 0.09
Lepton Trans Emittance fim 25 0.02
rms bunch height (m g 0.001
Total lepton Power MW 115 28
Proton/electron Driver power MW 4 188
Wall power MW 140 465

= Muon collider looks appealing compared to e.g. 3 TeV CLIC

= More luminosity
= More detectors
= Less wall power

= But less well developed conceptually
25



The Muon Road

Muon collider energy is limited by ring circumference

= Cost ~ tunnel length

= Energy ~ tunnel length

= Critical technology is superconducting magnet field strength
Luminosity limited by ionisation cooling

= Critical technology is RF peak field

= |mproved magnetic fields may help with e.qg. final focus
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Possible Routes

ILC R&D Low Power Superbeam Project X - R&D Neutrino Factory R&D CLIC R&D Super B Factories
Low Power Project X
High Power Project X Muon Collider R&D
High Power Superbﬁautrino Factory
\ ,
ILC - 500 GeV Muon Collider Higgs Factory CLIC - 500 GeV

l

3 TeV Muon Collider

'

CLIC - 3 TeV

= Energy frontier looks expensive compared to LHC
Muon collider is less expensive but higher risk

= Mitigate by staging
Electron linear collider is more expensive but lower risk
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Cost Drivers - Magnets

Current Density Across Entire Cross-Section
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Cost Drivers - RF

L-Band SRF Niobium Cavity Gradient Envelope
and Gradient R&D Impact to SRF Linacs
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The Energy and Intensity Frontier?

= Pushing the energy frontier beyond the
LHC is not a given

= Even reaching the same energy with
leptons looks hard

= Limited by underlying technology and
cost
= Needs development
= Long lead times
= |ntensity frontier is probably more fun
= Lots of small, interesting experiments
= Upgradable to the energy frontier... if
you really want
= Collaboration with non-HEP
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