



# The CMS Binary Chip

### Overview and results

Will Ferguson

IOP 2012
HEPP and APP group Annual Meeting 28/03/12



### Outline



Introduction to CMS Silicon Strip Tracker (SST)

High Luminosity LHC (HL-LHC) and implications for the tracker

Strip readout – present and future

CMS Binary Chip (CBC)

UA9 beam test

Results from beam test → Beam profile

→ Residual distributions

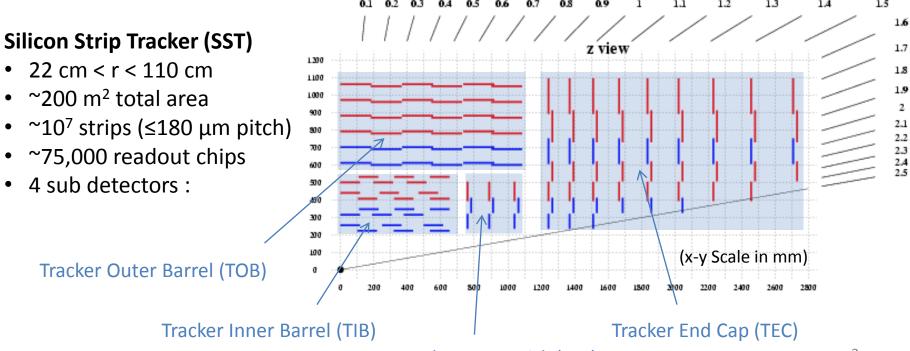
→ Cluster positions

→ Efficiency

Summary

#### Imperial College London

## CMS Silicon Strip Tracker (SST)




The Tracker sits at the centre of CMS

Provides precise, efficient measurement of charged particle trajectories

#### Pixels at centre

- 41 mm < r < 150 mm</li>
- 60 million pixel channels, 100 x 150m pitch
- 3 barrels layers, 2 end cap disks either end
- <35 μm transverse IP resolution</li>





### Tracker at the HL-LHC



HL-LHC foresees an increase in luminosity towards 5×10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>

Principal aim is to increase data rate → better statistics

BUT, increased luminosity has significant implications for the CMS tracker...

### Radiation damage

Increases due to greater particle fluence

#### Detector occupancies

Occupancies will increase → higher granularity required

### Power consumption

Higher granularity  $\rightarrow$  more strips  $\rightarrow$  more power and cooling

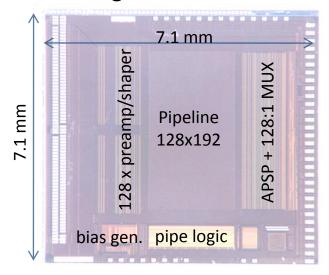
#### Trigger

Level 1 trigger rate must remain at 100 kHz → Tracker must be used

### Imperial College London

# Strip readout




Strips are currently read out by the APV25 chip...

- 128 channel analogue pipeline readout chip, 0.25 μm CMOS
- Analogue → pulse height information remains (good for position resolution)
   → all detector information available off detector
- Simple system → zero suppression is not required, due to manageable data rates
  - → fixed data rate... fully synchronous

#### However, at the HL-LHC...

High speed off-detector digital links will be used...

- FE digitisation would be needed for compatibility
   → very complicated chip
- Zero suppression would be needed due to high data volume and adc power
   → extra buffering required due to varying data volume per trigger

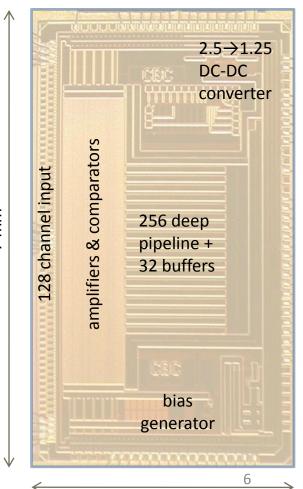


## CMS Binary Chip (CBC)



Prototype binary readout chip for short microstrips at the HL-LHC

Binary → uses a comparator to select "hit" or "no hit" on each strip


- 128 channels
- Individually programmable thresholds, bias, latency
- Fabrication: 130nm CMOS
- Pipeline depth: 256 (40MHz  $\rightarrow$  6.4µs latency)
- Power consumption: ~300μW/channel

#### Advantages of binary system

- Simple design less material/power
- Data volume remains manageable
- Zero suppression not required
  - → data volume per trigger is constant
- Simple triggering algorithms are possible

### **Disadvantages**

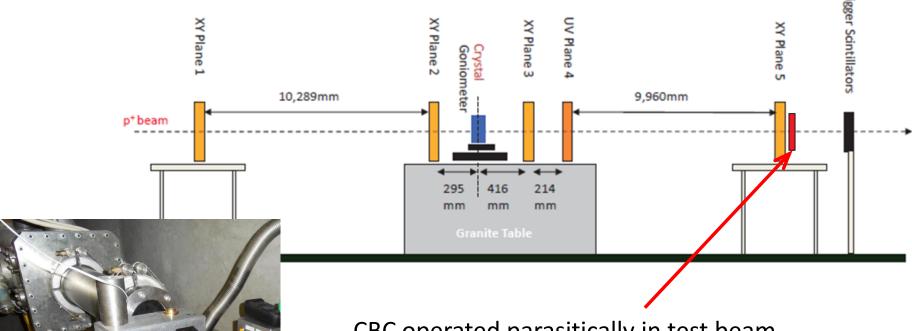
- Loses pulse height information
  - → implications for position resolution?



4 mm



### UA9 beam test, Sept 2011




UA9 → looks at crystal channeling of protons for collimation purposes

H8 beam line - 400 GeV protons

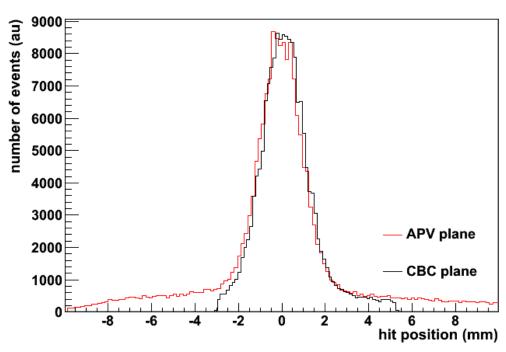
Imperial provided tracking telescope – 5 pairs of orthogonal silicon strip sensors

using CMS tracker readout (APV25, CMS FED, CMS DAQ software)



CBC operated parasitically in test beam (using sensor of ~134 µm pitch)

→ allows comparison with telescope data




### Results (I) – beam profile

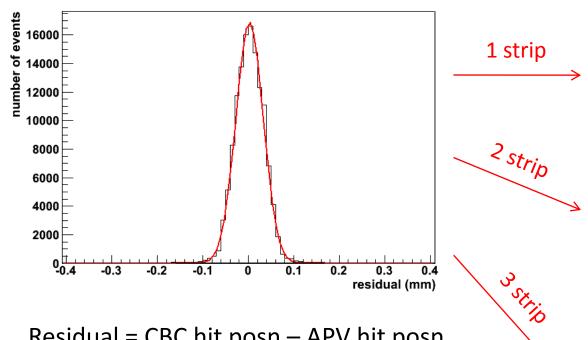


Beam profile from telescope APV plane and CBC plane show consistency

→ Used for alignment



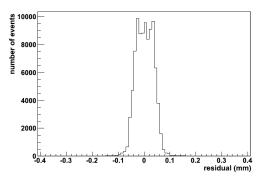
Subsequent analysis of resolutions and efficiencies is subject to selection cuts

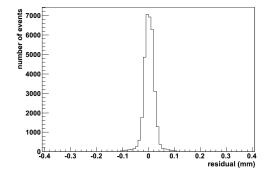

**Event selection** 

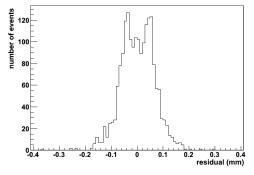
- → one reconstructed downstream track in telescope
- → one hit in 5<sup>th</sup> telescope plane
- → x alignment (track incident on CBC)
- → y alignment (track within 3mm vertical range)



### Results (II) – residual plots





Residual = CBC hit posn – APV hit posn Spread in residuals =  $30.22 \pm 0.06 \mu m$ 

APV plane resolution =  $7.0 \pm 0.1 \mu m$ 

- $\rightarrow$  CBC resolution = 29.4 ± 0.1  $\mu$ m
- $\rightarrow$  better than pitch/ $\sqrt{12}$  = 38.8 µm







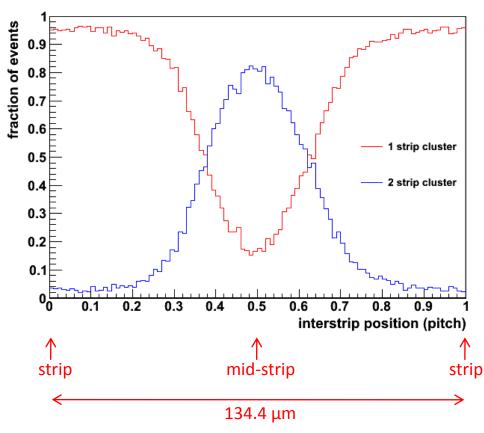
#### Imperial College London

# Results (III) – cluster distribution



One and two strip clusters dominate

Proportion of each depends largely on position on CBC strip...

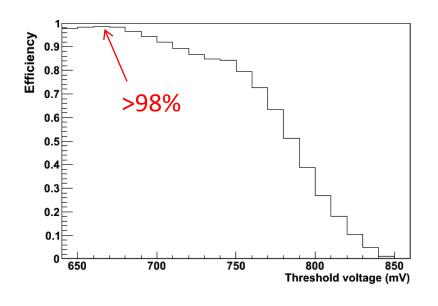

Position on CBC strip is estimated from 5<sup>th</sup> telescope plane

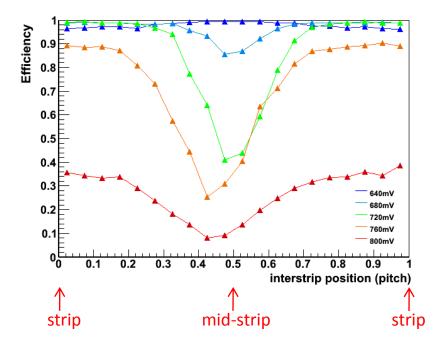
### Strip region

- → charge mostly on one strip
- → one strip clusters

### Mid-strip region

- → charge shared evenly between strips
- → two strip clusters




## Results (IV) – efficiency



Efficiency → proportion of selected events that lead to an event in CBC sensor





#### Characteristic S-curve

→ Efficiency reduces with threshold voltage as charge is less likely to exceed threshold

Efficiency drops in mid-strip region as charge is shared between strips

Effect is greater at large thresholds



### Summary



CMS tracker will move to a binary readout in preparation for the HL-LHC

Prototype has been tested in the H8 400 GeV proton beam

Beam profile is consistent with telescope

Residual distribution shows better position resolution than pitch/ $\sqrt{12}$ 

Cluster sizes are strongly related to hit positions over sensor strip period

Efficiency is ~98% at operating thresholds, but is reduced in the mid strip region at larger thresholds