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Introduction

Track multiplicity: Number of tracks reconstructed in an event

A bench mark measurement for any new energy regime

Event selection
Minimal cuts
Multiplicity dominated by soft QCD processes
Shown to be di�cult to describe with Monte Carlo models

Excellent measurement for constraining models with real data

Important for accurately describing background for many
analyses
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Measurment carried by other experiments

CMS http://arxiv.org/abs/1011.5531

ATLAS http://arxiv.org/abs/1012.5104

LHCb http://arxiv.org/abs/1112.4592(tracks reconstructed
from Vertex detector, this analysis unfolds from Long tracks)
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LHCb track classification

Figure 1: LHCb track classification scheme

Long track benefits

Momentum information

PID information
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Detector response

Lost particles
Detector ine�ciency

reconstruction ine�ciency

Fake particles and background
Detector noise
interaction of particles with detector material producing particles

mis-reconstructed tracks
Overall e↵ect is a smearing of the true distribution

Unfolding corrects for these e↵ects to give back the true distribution

(a) MC data, 2.0 <= eta <
4.5

(b) Reco e�ciency (c) Fake fraction
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Response matrix

Smearing of the true distribution is described by the matrix
equation

a = G · b

a = reconstructed multiplicity distribution (column matrix)
b = true multiplicity distribution (column matrix)
G = response matrix (n by m matrix)

a

i

= probability for event to reconstructed i tracks
b

j

= probability for event to produce j particles
G

ij

= probabilty to reconstruct i tracks given the event produced j

particles
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Toy response matrix
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Calculating the response matrix

Response matrix calculated from Monte Carlo
Dependent only on the detector response simulation
Generator model independent (else introduce bias into
measurement when unfolding)

Generate fill 2D histogram of the number of reconstructed tracks vs
the number of generated particles

Apply normalization condtion. Sum of column elements = 1 (Row

elements in the case of a histogram)

(d) n reco vs n gen (e) response matrix
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Unfolding

a = G · b

In real data a and G are known, need to solve for b

G

�1 · a = b

Matrix inversion uses method of Singular value decomposition
(SVD)

a = u · W · v

T · b

u · u

T = v · v

T =
W is a diagonal matrix with non-zero elements on the diagonal

b = v · W

�1 · u

T · a
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Direct matrix inversion

(f) MC cross check (g) real data

Figure 2: Unfolded multiplicities using a direct matrix inversion

Unphysical behaviour

large errors

oscillations

normalization violated
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Unfolding instabilities

b = v · W

�1 · u

T · a

b = v · W

�1 · a

0

b
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j
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Interpretation

unfolding interpreted as the expansion of orthogonal functions
weighted by unfolding weights of a rotated distribution

large unfolding weights amplify noise ! large error bars in
unfolded multiplicity

higher order functions behave more oscillatory ! oscillations
in unfolded multiplicity
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Regularization

Apply regularization to remove contributions from higher
order terms

b = v · R · W

�1 · u

T · a

R is a diagonal matrix, with R

ii

= 1, if i < R

cuto↵

e.g, R

cuto↵

= 2

R =

0

BB@

1 0 0 ...
0 1 0 ...
0 0 0 ...
... ... ... ...

1

CCA
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Judging the best cut o↵ by eye: MC

Figure 3: Unfolded multiplicity (top), unfolding matrix (middle),
covariance matrix of unfolded multiplicity (bottom) for regularization cut
o↵ 1, 10, 20, 30 (from left to right)
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Judging the best cut o↵ by eye: MC

Figure 4: Unfolded multiplicity (top), unfolding matrix (middle),
covariance matrix of unfolded multiplicity (bottom) for regularization cut
o↵ 40, 50, 60, 70 (from left to right)
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Judging the best cut o↵ by eye: MC

Figure 5: Unfolded multiplicity (top), unfolding matrix (middle),
covariance matrix of unfolded multiplicity (bottom) for regularization cut
o↵ 100, 110, 120, 130 (from left to right)
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Judging the best cut o↵ by eye: Real data

Less events in real data

Unfolding method tuned to MC data

Expect noise amplication to turn on at lower orders in
unfolding expansion
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Judging the best cut o↵ by eye: Real data

Figure 6: Unfolded multiplicity (top), unfolding matrix (middle),
covariance matrix of unfolded multiplicity (bottom) for regularization cut
o↵ 2, 4, 6, 8 (from left to right)
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Judging the best cut o↵ by eye: Real data

Figure 7: Unfolded multiplicity (top), unfolding matrix (middle),
covariance matrix of unfolded multiplicity (bottom) for regularization cut
o↵ 10, 12, 14, 16 (from left to right)
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Judging the best cut o↵ by eye: Real data

Figure 8: Unfolded multiplicity (top), unfolding matrix (middle),
covariance matrix of unfolded multiplicity (bottom) for regularization cut
o↵ 18, 20, 22, 24 (from left to right)

20 / 29



Summary and conclusion

An generator independent unfolding method has been
developed

Technique is sensitive to statistical errors which result in
unphysical behaviour

A regularization scheme is used to correct for this

21 / 29



Final words

A working unfolding method is in place

Future improvements,
more sophisticated regularization scheme (Method of Reduced
Cross-Entropy)
Alternative unfolding method (cross check), Parameterization
method, no matrix inversion
Parameterization of the response matrix, smoothing
particularly significant in low statistics region

Results to be used to apply constraints to Monte Carlo
generator models

Put us in the best possible position to keep making world’s
best measurements and increase sensitivity to new Physics
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BACKUP
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Parameterization method

No matrix inversion

Numerical trial and error method

Define a parameterization with which to fit the true
distribution

True distribution is not known ) parameterization must be
generic enough to represent any shape
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Parameterizations

Figure 9: From top left to bottom right, Parameterization a, b, c, d,
Voong, Log normal, Double log normal, Double negative binomial

25 / 29



Parameterization method

1 Make an estimate of the parameters which describe the true
distribution

2 Smear it with the response matrix

3 Perform a chi2 fit between the smeared distribution
(reco multiplicity

0) and the observed reconstructed
distribution

4 Propogate the parameters of the fit to the true distribution

(a) 2 (b) 3 (c) 4

26 / 29



Judging the best cut o↵ by eye: Real data

Figure 10: Unfolded multiplicity (top), unfolding matrix (middle),
covariance matrix of unfolded multiplicity (bottom) for regularization cut
o↵ 2, 4, 6, 8 (from left to right)
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Judging the best cut o↵ by eye: Real data

Figure 11: Unfolded multiplicity (top), unfolding matrix (middle),
covariance matrix of unfolded multiplicity (bottom) for regularization cut
o↵ 10, 12, 14, 16 (from left to right)
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Judging the best cut o↵ by eye: Real data

Figure 12: Unfolded multiplicity (top), unfolding matrix (middle),
covariance matrix of unfolded multiplicity (bottom) for regularization cut
o↵ 18, 20, 22, 24 (from left to right)
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