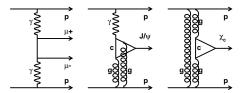
Central Exclusive Production studies at LHCb¹

Marius Bjørnstad (The University of Manchester)

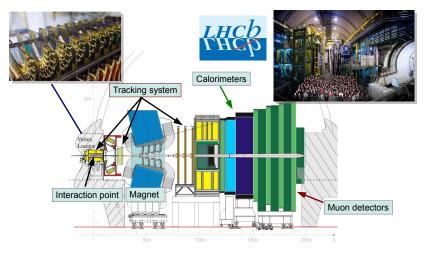

03/04/2012 IoP HEPP and APP meeting 2012

Introduction

- Central exclusive production (CEP): Proton collisions where...
 - Protons remain intact after the interaction
 - A simple "central" system is produced
- All final state particles except the protons can be measured ("exclusive production")

CEP processes:

- (A) Non-resonant dimuon production
- (B) Vector meson $(J/\psi, \psi(2S))$ production ("photoproduction")
- (C) χ_c production (Double Pomeron Exchange)



Motivation

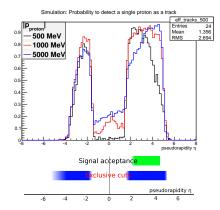
- (A) Non-resonant dimuon production Theory is well known, we can reproduce this result
- (B) Vector meson (J/ψ, ψ(2S)) production ("photoproduction") Measured at HERA with photon instead of one proton. Can probe generalised PDFs.
- (C) χ_c production (Double Pomeron Exchange) Measured by CDF, but relative proportion of different χ_c states is not known. Analogous to exclusive Higgs production, and probes PDFs, pomeron physics.

The LHCb Experiment

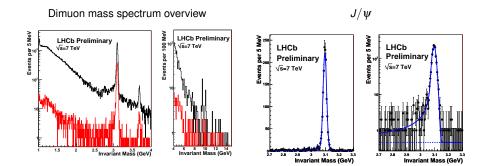
Reconstructed objects in this analysis:


- TRACK: Sequence of hits through one or more tracking detectors. LHCb can track and trigger on particles with $p_T \sim 200 \,\text{MeV}$
- Ø MUON: Track + hits in the muon chambers
- 9 PHOTON: Deposit in calorimeter consistent with photon, with no track

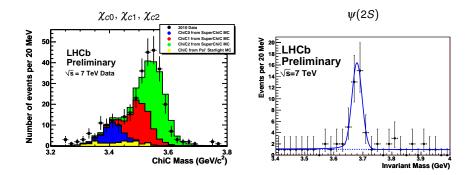
Analysis overview


We look for events with two muon tracks

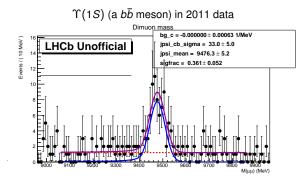
- Select Central Exclusive Production (CEP) event by requiring
 - No activity except for the signal process!
 - ... that is, exactly two tracks in the detector
- Because we see no other particles, the events are candidates for CEP
- There may be additional particles produced outside of LHCb, and this background has to be estimated


Tracking acceptance

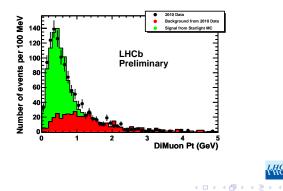
- Main LHCb pseudorapidity range is 1.9 $< \eta <$ 4.9
 - **()** We use muons with $p_T > 650 \,\mathrm{MeV}$, photons with $E_T > 200 \,\mathrm{MeV}$
- Can detect additional tracks in a larger range (events with additional tracks are rejected as CEP candidates)


• The main background is from the same final state as the signal $(J/\psi, \text{ etc})$ MANCHESTER but produced in a different way

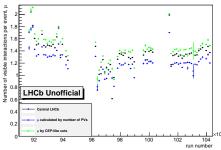
2010 Signal processes



2010 Signal processes


2011 Signal process!

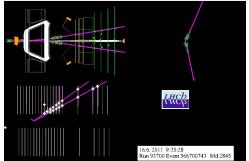
Non-exclusive background estimation


- CEP Signal and "inelastic" production of the same final state give rise to different p_T -distributions
- Can measure *p*_T-distribution for background in events with *n* additional tracks
- Extrapolate to n = 0 (2 signal tracks only) for background p_T -spectrum in CEP candidate events
- Extract signal and background fractions using a fit to the p_T of the dimuon

MANCHEST

Luminosity

- We need to exclude events with multiple interactions (pile-up)
- Number of collisions per event follows a Poisson distribution
 - Huge number of protons per beam
 - Each proton pair has a very small probability of colliding
 - ▶ Probability to have one collision is $P(1) = \mu \exp(-\mu)$, with μ being the mean number of interactions per event
- We calculate the number of interactions per event in different ways and compare:


Visible interactions per beam crossing in 2011

At LHCb we have relatively low μ, so we can use about 22 % of the interactions (32 % of the events)

Conclusions

- CEP gives us a very pure signal
- Some challenges related to non-exclusive background
- On track for a measurement based on 2011 data

LHCb Event Display

