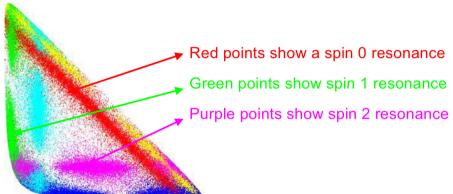


Measuring the $B^0_{d,s} \to K_s^{\ 0}\,h^{+/-}\,h^{-/+}$ Relative Branching Fractions at the LHCb experiment

D. Dossett on behalf of the LHCb collaboration

B \rightarrow K_shh Decay Mode

- Part of the Charmless 3-Body B decay family.
- Can proceed via Penguin loops or Tree diagrams.
- Relative phase between these diagrams is the CKM angle γ.



 Tree+loop diagram contributions are of similar magnitude making the interference easier to measure.

Physics Potential

- Potential for competitive relative branching fraction (BF) measurements/limits (+ possible discoveries) in 5 modes.
- β^{eff} angle extraction is possible from Dalitz Plot (DP) analysis.

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} \overline{|\mathcal{A}|^2} dm_{ab}^2 dm_{bc}^2$$
 Red points show a spin Green points show spin Purple points s

Toy Monte Carlo Dalitz Plot showing several resonance spin states

- Constraints on γ from $B_s \to K_s \pi \pi$ and $B_s \to K \pi \pi^0$ DP analyses (see slide 11).
- Due to the loop in the penguin diagram, New Physics (NP) particles can enter into the decays and cause deviations from expected values.

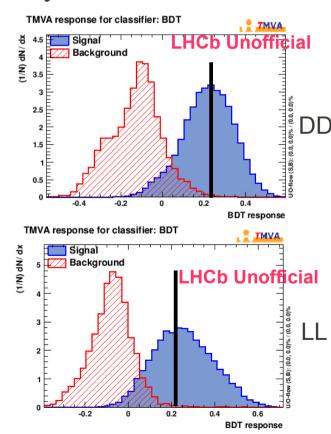
Current Goals

- Search for the 3 unobserved $B_s \to K_s$ hh modes
- Confirmation (or otherwise?) of $B_d \to K_s K\pi$ seen at BaBar.
- Measurement of these branching fractions (BF) relative to the well established $B_d \to K_s \pi\pi$ mode seen at the B-factories.

Decay Mode	Branching Fraction (10^{-6})			
	BaBar	Belle	World Average	
$B_d^0 \to K^0 \pi^+ \pi^-$	50.2 ± 2.3	47.5 ± 4.4	49.6 ± 2.0	
$B_d^0 \to K^0 K^{\pm} \pi^{\mp}$	6.4 ± 1.2	< 18	6.4 ± 1.2	
$B_d^0 \to K^0 K^+ K^-$	23.8 ± 2.6	28.3 ± 5.2	24.7 ± 2.3	

Current values of measured \mathbf{B}_{d} modes from Heavy Flavour Averaging Group

Selection of Candidates - BDT


Using TMVA package to create Boosted-Decision-Tree (BDT) selectors from discriminating variables. Treat K_s DD/LL candidates separately (K_s DD candidates have no daughter pion hits in the VELO sub detector).

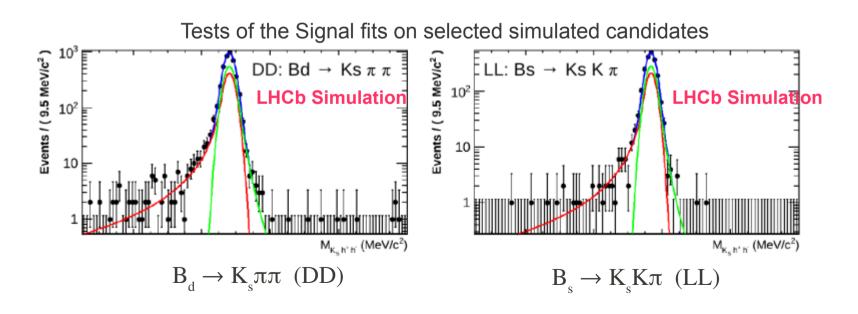
• 2010 Data used for the training of BDT, with 2-Body charm resonances

and some $\Lambda_{\rm b,c}$ mass combinations vetoed.

Description				
B transverse momentum				
B IP significance w.r.t PV				
B pointing angle				
B vertex fit χ^2				
B flight distance significance w.r.t PV				
hadron IP significance w.r.t PV				
$K_{\rm S}^0$ vertex fit χ^2				
$K_{\rm s}^0$ flight distance significance w.r.t PV				
$K_{\rm s}^0$ IP significance w.r.t PV				

	BDT Cut	ϵ Signal	ϵ Background
$B_s^0 \to K_s^0 \pi^+ \pi^- \text{ (LL)}$	0.21	0.63	0.003
$B_s^0 \to K_s^0 \pi^+ \pi^- \text{ (DD)}$	0.25	0.42	0.002

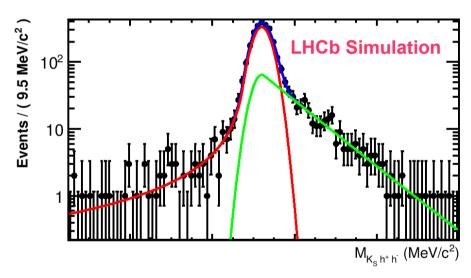
Selection of Candidates – PID & Vetoes


- RICH detector information (mostly) used to calculate Delta-log-likelihood (DLL) PID variables for charged tracks.
- Use cuts on DLL variables to distinguish pions and kaons.

Track	π	K
Kaon PID Requirement	$\mathrm{DLL}_{K\pi} < 0$	$\mathrm{DLL}_{K\pi} > 5$
Proton PID Requirement	$\mathrm{DLL}_{p\pi} < 10$	$(\mathrm{DLL}_{p\pi} - \mathrm{DLL}_{K\pi}) < 10$

- Charmonium $\rightarrow \mu^+\mu^-$ removed using a cut on muon ID.
- Charmed resonances vetoed with cuts on track mass combinations.
- Fewer than 1% of events contain multiple candidates. A single candidate is selected using an arbitrary (but reproducible) selection algorithm.

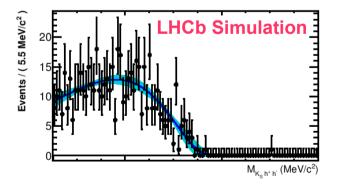
Simultaneous Fit - Signal

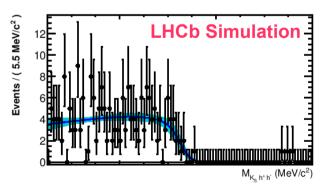

- Simultaneous fit of all 6 modes (3 hh combinations and both DD & LL) so that cross feeds can be taken into account. Fit commissioned on ~250pb⁻¹ of 2011 Data (about 1/5th of the full dataset).
- Signal Fit:
 - 2 Crystal Ball functions with the same mean value and resolution and different tails
 - Simultaneous fit of all simulated (MC) signals, with same tail parameters, the same fraction of the second CB and the same B_d and B_s mean values.

Simultaneous Fit – Cross Feed + Combinatorial

- Cross Feed Fit:
 - 2 Crystal Ball functions again, with same mean + resolutions but different tail parameters.

Tests of the Cross Feed fits on selected simulated candidates

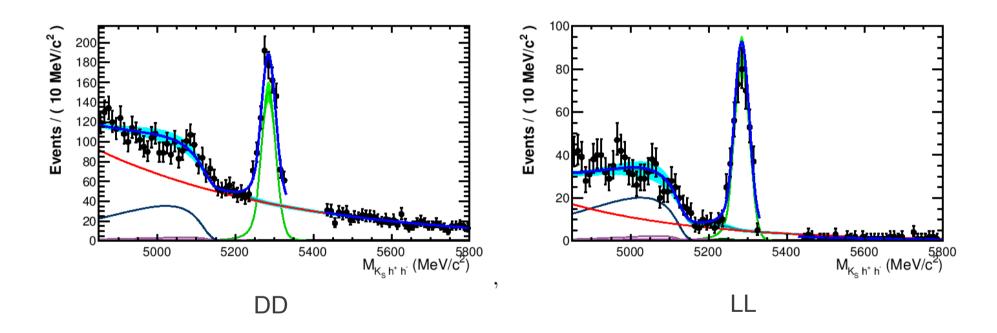

 $B_d \to K_s \pi \pi$ events with $K\pi$ mass hypothesis


- Combinatorial Background:
 - Fitted with exponential.

Simultaneous Fit – Partially Reconstructed Backgrounds

- Partially Reconstructed Backgrounds:
 - Generalised ARGUS function convoluted with Gaussian resolution
- Examples:
 - $B_d \rightarrow K_s \pi \pi \gamma$ photon not reconstructed.
 - B \rightarrow K*(K_s π) $\rho(\pi\pi)$ pion from 4-body VV mode not reconstructed.
 - $B^- \to D^0(K_s \pi \pi) K^-$ pion not reconstructed.
 - + others...

Tests of the partially reconstructed fits on selected simulated candidates



 $B^- \to D^0 K^-$ events reconstructed as $K_{_S} K\pi$: left DD, right LL

Fit Performance

• On the full 2011 dataset with blinded B_s mass region, we obtained these fit results for $B_d \to K_s \pi \pi$

- Good performance of fit. Observe yields of ~750 in DD, ~440 in LL
- Ratio of $B_d \to K_s KK$ and $B_d \to K_s \pi \pi$ in excellent agreement with expectation.

Current Status + Future Goals

- Extraction of efficiencies from data, extraction of yields and evaluation of systematic uncertainties are under way.
- Calculation of relative BFs/upper limits on blinded modes beginning very soon. Working towards a preliminary result for late May (FPCP).
- Then a paper result to follow shortly afterwards.
- Future:
 - Dalitz Plot analyses of $B_d \to K_s \pi \pi$ (KK) and $B_s \to K_s K \pi$
- Longer Term:
 - Time dependent Dalitz Plot analyses of B_d modes for β^{eff} extraction
 - Time dependent Dalitz Plot analysis of $B_s^{} \to K_s^{} K \pi$ mode for evaluation of $\beta_s^{\;eff}$
 - $B_s \to K_s \pi \pi$ and $B_s \to K \pi \pi^0$ Dalitz Plot analyses to extract relative phase of $B \to K^* \pi$ and $B \to \rho K$ decays. Isospin analysis gives a constraint on γ .

Backup Slides

PDF Functions

Crystal Ball:

- $t = m \mu$
- μ and σ are mean and resolution of Gaussian part.
- Sign of α governs left/right handedness of tail, *n* governs power law of tail decrease.

$$CB(t) = \mathcal{N} \cdot \begin{cases} \exp(-t^2/2\sigma^2) & \text{if } t/\sigma > -\alpha \\ (\frac{n}{|\alpha|})^n \exp(-\alpha^2/2)(\frac{n-\alpha^2}{|\alpha|} - \frac{t}{\sigma}) & \text{if } t/\sigma \leq -\alpha, \end{cases}$$

- ARGUS:
 - $m < m_t$ (threshold mass value)
 - c controls curvature
 - p controls falling of slope.

$$A(m:m_t,c,p) = \frac{2^{-p}c^{2(p+1)}}{\Gamma(p+1) - \Gamma(p+1,c^2/2)} \cdot \frac{m}{m_t^2} (1 - \frac{m^2}{m_t^2})^p \exp\left[-\frac{1}{2}c^2(1 - \frac{m^2}{m_t^2})\right]$$

Simultaneous Fit – Signal + Cross Feed

Simultaneous fit of both DD & LL samples, 6 distributions with 37 parameters.

Signal:

- Shape from MC.
- B_{ds} masses floated: requested to be the same for all distributions.
- $B_d \rightarrow K_s \pi \pi$ resolutions (DD and LL) floated.
- All the other resolutions are scaled according to Monte Carlo (MC).
- Cross Feeds: $K_s \pi \pi$ and $K_s KK vs. K_s K\pi$ and vice versa.
 - Shapes from MC
 - Yields Gaussian constrained with the mode yields.

Simultaneous Fit – Backgrounds

Partially reconstructed backgrounds:

- Shapes from MC
- All the relative yields of the partially reconstructed backgrounds respect to the signal.
- (B_d or B_s) are the same in DD and LL.
- Most of the yields are Gaussian constraints with errors coming from Branching fractions.
- Charm contribution to K_s KK extracted from data.

Combinatoric background:

- Exponential shape, parameter floated in the fit.
- Same shape for all decay modes.
- different shape for DD and LL.