Four-body D mixing at LHCb

Tom Hampson
03/04/2012

IOP meeting

- D meson decays to the $K \pi$ final state can proceed directly or via mixing

- For doubly Cabibbo-supressed (DCS) decays these two processes can be comparable

- Mass eigenstates in terms of flavour eigenstates (no CP violation)

$$
\left|D_{1,2}\right\rangle=\left|D^{0}\right\rangle \pm\left|\bar{D}^{0}\right\rangle
$$

- Time evolution of mass eigenstates

$$
\left|D_{1,2}(t)\right\rangle=e^{-i M_{1,2}-\frac{1}{2} \Gamma_{1,2} t}\left|D_{1,2}(t=0)\right\rangle
$$

- Define mixing parameters

$$
x \equiv \frac{M_{2}-M_{1}}{\left(\Gamma_{1}+\Gamma_{2}\right) / 2} \quad \text { and } \quad y \equiv \frac{\Gamma_{2}-\Gamma_{1}}{\Gamma_{1}+\Gamma_{2}}
$$

- For $\mathrm{K} \pi$, time dependent DCS/CF ratio is:
$r(t)=r_{D}+\sqrt{r_{D}} y^{\prime} t \Gamma+\frac{x^{2}+y^{\prime 2}}{4}(t \Gamma)^{2}$

DCS decays

$$
-2-2-2
$$

$$
r(t)=r_{D}+\sqrt{r_{D}} y^{\prime} t \Gamma+\frac{x^{\prime 2}+y^{\prime 2}}{4}(t \Gamma)^{2}
$$

interference

mixing

- x and y are rotated by strong phase difference between DCS and CF decays

$$
\begin{aligned}
& x^{\prime} \equiv x \cos \delta_{K \pi}+y \sin \delta_{K \pi} \longleftarrow \\
& y^{\prime} \equiv y \cos \delta_{K \pi}-x \sin \delta_{K \pi} \text { strong phase difference } \\
& \text { between DCS and CF }
\end{aligned}
$$

- For $K \pi \pi \pi$, decay usually occurs via intermediate resonances
- Time dependent DCS/CF ratio is now:

$$
r(t)=r_{D}+R_{K 3 \pi} \sqrt{r_{D}} y^{\prime \prime \prime} t \Gamma+\frac{x^{\prime \prime \prime 2}+y^{\prime \prime \prime 2}}{4}(t \Gamma)^{2}
$$

- Coherence factor appears in $1^{\text {st }}$ order t term
- between 0 and 1
- gives a measure of the coherence of intermediate resonances
- low if decay proceeds via many destructively interfering resonances

$$
\begin{array}{ll}
x^{\prime \prime \prime} \equiv x \cos \delta_{K 3 \pi}+y \sin \delta_{K 3 \pi} \longleftarrow & \begin{array}{l}
\text { AVERAGE strong phase } \\
\text { difference between DCS } \\
\text { and CF }
\end{array} \\
y^{\prime \prime \prime} \equiv y \cos \delta_{K 3 \pi}-x \sin \delta_{K 3 \pi} &
\end{array}
$$

- Best measurements of $K 3 \pi$ parameters from CLEO

- Vital inputs for measuring CPV weak phase γ using tree
$K^{-} \pi^{-} 2 \pi^{+}$coherence factor $R_{K 3 \pi}=0.36_{-0.30}^{+0.24}$
$K^{-} \pi^{-} 2 \pi^{+}$average relative strong phase $\delta^{K 3 \pi}=\left(118_{-50}^{+60}\right)^{\circ}$
- We can significantly improve these level $B \rightarrow D K$ decays

Ratioextraction

$$
\frac{N_{\bar{D}^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-}}}{N_{\bar{D}^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}}}=\frac{1}{r} d
$$

$r=\mathrm{DCS} / \mathrm{CF}$

$$
\begin{gathered}
\frac{N_{D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}}}{N_{D^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-}}}=\frac{1}{r} \frac{1}{d} \\
\frac{N_{\bar{D}^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-}}}{N_{\bar{D}^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}}} \times \frac{N_{D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}}}{N_{D^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-}}}=\frac{1}{r^{2}}
\end{gathered}
$$

- Where d is detection asymmetry $\left(K^{+} \pi^{-}\right) /\left(K^{-} \pi^{+}\right)$
- ALL* production and detection asymmetries cancel!
*We assume the same selection efficiency for DCS and favoured (assign systematic based on potential Dalitz plot differences)
- We take our D^{0} s from strong decays $D^{*+} \rightarrow D^{0} \pi^{+}$(and the charge conjugate)

then we know the flavour of the D

since the π is low energy, we call it a "slow pion"

- Signal D^{*} decays are characterised by a narrow peak in the $D^{*}-D^{0}$ mass distribution ("delta mass")
- Use the $2 \mathrm{D} D^{0}$ mass vs delta mass plane to find events which are both D^{*} and D^{0} signal decays

[^0]- $\sim 1 \mathrm{fb}^{-1}$ shown below
- Majority of events in DCS sample are CF D^{0} decays combined with a random background slow pion

CF

DCS

- Fit yields in D^{0} lifetime bins to extract parameters
- Use toy study to maximise our sensitivity by optimising our lifetime binning
- Note that the size of the coherence factor determines our sensitivity to the interference term

$$
\begin{aligned}
& \text { rerence term } \\
& \qquad r(t)=r_{D}+\sqrt{r_{D}} y^{\prime} t \Gamma+\frac{x^{\prime 2}+y^{\prime 2}}{4}(t \Gamma)^{2} \quad r(t)=r_{D}+R_{K 3 \pi} \sqrt{r_{D}} y^{\prime \prime \prime} t \Gamma+\frac{x^{\prime \prime \prime 2}+y^{\prime \prime \prime 2}}{4}(t \Gamma)^{2}
\end{aligned}
$$

- D mixing mixing already well established (although no single 5σ measurement)
- Use our huge DCS sample to measure DCS/CF ratio in lifetime bins
sample size will more than double by end of 2012
- We plan to significantly improve coherence factor and average strong phase difference measurements
vital input for CKM angle γ
- Plan to be ready for summer conferences

Slow ti asymmetry

$$
\frac{N_{D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}}}{N_{\bar{D}^{0} \rightarrow K^{-}} \pi^{+} \pi^{+} \pi^{-}}=\frac{1}{r} p
$$

$$
\frac{N_{D^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-}}}{N_{\bar{D}^{0} \rightarrow K^{+}} \pi^{+} \pi^{-} \pi^{-}}=r p
$$

$$
\frac{N_{D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}}}{N_{\bar{D}^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}}} / \frac{N_{D^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-}}}{N_{\bar{D}^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-}}}=\frac{1}{r^{2}}
$$

- Where p is production AND detection asymmetry π^{+} / π^{-}
- All efficiencies cancel again (gives exactly the same result)
- Use D^{0} mass sidebands from 2010 data as background sample and Monte Carlo signal events to tune selection cuts
- Perform 2D fit to obtain signal/background ratio
use to scale signal and background in optimisation
scale signal to DCS branching fraction

- Tighten PID cuts for all daughters
- Require events to have been triggered by the $D \rightarrow \mathrm{hhhh}$ trigger
significantly improves S/B
- For DCS we expect large contribution from doubly misidentified CF decays ($K \leftrightarrow \pi$)
veto any candidates which lie within $\pm 30 \mathrm{MeV}$ of $\mathrm{PDG} D^{0}$ mass after swapping mass hypotheses of K, π
- Keep only one candidate per event
best D^{0} vertex chi ${ }^{2}$ (or D^{*} vertex chi ${ }^{2}$ if the same D^{0})
- Then separate CF and DCS decays...
- Perform a 2D unbinned maximum likelihood fit to the mass vs delta mass plane
- Signal in mass and delta mass described by the sum of a Gaussian and a Crystal Ball function (fix for DCS after fit to CF)
- Background in D^{0} mass parameterised with a $1^{\text {st }}$ order polynomial
- Delta mass background is modelled using data
take $D^{0} 4$-vector from one event combine with slow pion 4-vector from another event
use the same shape for both CF and DCS

[^0]: $\frac{5}{2}$ 22_{4}^{4} BRISTOL

