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D decays to Kπ
• D meson decays to the Kπ final state can proceed directly or via 

mixing

• For doubly Cabibbo-supressed (DCS) decays these two processes 
can be comparable
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1.6 Extracting the Angle γ from B± → D0K± 17
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Figure 1.5: Feynman diagrams of the decays (a) D0 → K−π+ and (b) D̄0 → K−π+.
There is a relative phase and magnitude ratio of δKπ

D and rKπ
D , respectively, between

the corresponding amplitudes. Decay (a) is referred to as Cabibbo Favoured (CF)
since the amplitude is proportional to two diagonal CKM matrix elements. Decay (b),
however, is referred to as Doubly Cabibbo Suppressed (DCS) since its amplitude is
proportional two off-diagonal CKM matrix elements. An additional diagram exists for
the DCS mode involving the internal emission of a W− boson.

process are of similar magnitude. This is the situation shown in Fig (1.4(b)). In the
opposite scenario, however, for same sign kaons, the total amplitude is given by

A(B− → (K−π−)K−) ∝ 1 + rB rKπ
D ei(δB−δKπ

D −γ), (1.55)

where it is observed the interfering amplitudes differ greatly in magnitude. Considering
all possible charge combinations, four distinct final states can be reconstructed. The
rates of these four processes take the following form:

Γ(B− → (K−π+)DK−) ∝ 1 + (rBrD)2 + 2 rBrD cos(δB − δD − γ), (1.56)

Γ(B− → (K+π−)DK−) ∝ r2
B + r2

D + 2 rBrD cos(δB + δD − γ), (1.57)

Γ(B+ → (K+π−)DK+) ∝ 1 + (rBrD)2 + 2 rBrD cos(δB − δD + γ), (1.58)

Γ(B+ → (K−π+)DK+) ∝ r2
B + r2

D + 2 rBrD cos(δB + δD + γ), (1.59)

where the constant of proportionality, NKπ, is the same in each expression. It can be
seen that whilst Eqs. (1.57) and (1.59) are the more suppressed of the four rates, they
provide enhanced sensitivity to γ as a result of the interference terms appearing at
leading order. With dependencies on five separate parameters, an unambiguous deter-
mination of γ can not be made from these four rates alone. Although, by considering
the GLW final states hh = {K+K−,π+π−}, one obtains two further rate equations:

Γ(B− → (hh)DK−) ∝ 1 + r2
B + 2 rB cos(δB − γ), (1.60)

Γ(B+ → (hh)DK+) ∝ r2
B + 2 rB cos(δB + γ), (1.61)

with a different constant of proportionality, Nhh. This then leaves a total of six ob-
servable rates with dependence on six unknowns, allowing γ to be solved for.
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Figure 1.3: Feynman diagrams of the decays (a) B− → D0K− and (b) B− → D̄0K−.
There is a relative phase, δB − γ, and magnitude ratio, rB, between the corresponding
amplitudes. Diagram (a) is referred to as colour favoured whilst diagram (b) is referred
to as colour suppressed.

where AD and ĀD represent the amplitudes for the D0 and D̄0 decays, respectively. Due
to the colour suppression within the B− → D̄0K− and B+ → D0K− decays, rB is small.
The current world average from published measurements is rB = 0.103+0.017

−0.023 [C+05].
Consequently, the interference effects tend to be small. The value of the strong phase
difference is δB = (135 ± 26)◦ [A+08b]. A variety of strategies exist which exploit
the B → DK interference mechanism to extract γ. These strategies can be grouped
according to the choice of final state, fD. Before discussing the methods relevant to
this thesis, a description of the origin of strong phases is given.

1.6.1 Origin of CP Invariant Phases

CP invariant or ‘strong’ phases are integral to the B → DK formalism. Their origin
lies in the processes referred to as final state-interactions (FSI). These processes allow
various final states of the weak decay to scatter elastically or inelastically via non-weak
interactions. For a channel i → f , the total amplitude includes contributions from pro-
cesses i → f ′ → f , where the decay i → f ′ is weak, and the state f ′ subsequently
scatters into f via the strong (or electromagnetic) interaction. So, while a possible
CP-violating phase is associated with the weak decay i → f ′, the CP-invariant phase
arises in the f ′ → f scattering and is dominated by the strong interaction.

The sub-processes B → DK and D → fD are examples of the channel i → f
discussed above. Consequently, both sub-processes have associated strong phases that
we label as δB and δD, respectively. A special case worth mentioning is the decay to a
CP-eigenstate, such as D → K+K−. From the CP convention used to define Eq. (1.5),
it is trival to conclude that the associated CP invariant phase for CP-even(CP-odd)
final states is zero(π).
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ū

s

u

d̄

(a)

W−

u

c̄

u

d̄

s

ū
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the corresponding amplitudes. Decay (a) is referred to as Cabibbo Favoured (CF)
since the amplitude is proportional to two diagonal CKM matrix elements. Decay (b),
however, is referred to as Doubly Cabibbo Suppressed (DCS) since its amplitude is
proportional two off-diagonal CKM matrix elements. An additional diagram exists for
the DCS mode involving the internal emission of a W− boson.

process are of similar magnitude. This is the situation shown in Fig (1.4(b)). In the
opposite scenario, however, for same sign kaons, the total amplitude is given by

A(B− → (K−π−)K−) ∝ 1 + rB rKπ
D ei(δB−δKπ

D −γ), (1.55)

where it is observed the interfering amplitudes differ greatly in magnitude. Considering
all possible charge combinations, four distinct final states can be reconstructed. The
rates of these four processes take the following form:

Γ(B− → (K−π+)DK−) ∝ 1 + (rBrD)2 + 2 rBrD cos(δB − δD − γ), (1.56)

Γ(B− → (K+π−)DK−) ∝ r2
B + r2

D + 2 rBrD cos(δB + δD − γ), (1.57)

Γ(B+ → (K+π−)DK+) ∝ 1 + (rBrD)2 + 2 rBrD cos(δB − δD + γ), (1.58)

Γ(B+ → (K−π+)DK+) ∝ r2
B + r2

D + 2 rBrD cos(δB + δD + γ), (1.59)

where the constant of proportionality, NKπ, is the same in each expression. It can be
seen that whilst Eqs. (1.57) and (1.59) are the more suppressed of the four rates, they
provide enhanced sensitivity to γ as a result of the interference terms appearing at
leading order. With dependencies on five separate parameters, an unambiguous deter-
mination of γ can not be made from these four rates alone. Although, by considering
the GLW final states hh = {K+K−,π+π−}, one obtains two further rate equations:

Γ(B− → (hh)DK−) ∝ 1 + r2
B + 2 rB cos(δB − γ), (1.60)

Γ(B+ → (hh)DK+) ∝ r2
B + 2 rB cos(δB + γ), (1.61)

with a different constant of proportionality, Nhh. This then leaves a total of six ob-
servable rates with dependence on six unknowns, allowing γ to be solved for.
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ū

(a)

W−

ū
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where AD and ĀD represent the amplitudes for the D0 and D̄0 decays, respectively. Due
to the colour suppression within the B− → D̄0K− and B+ → D0K− decays, rB is small.
The current world average from published measurements is rB = 0.103+0.017

−0.023 [C+05].
Consequently, the interference effects tend to be small. The value of the strong phase
difference is δB = (135 ± 26)◦ [A+08b]. A variety of strategies exist which exploit
the B → DK interference mechanism to extract γ. These strategies can be grouped
according to the choice of final state, fD. Before discussing the methods relevant to
this thesis, a description of the origin of strong phases is given.

1.6.1 Origin of CP Invariant Phases

CP invariant or ‘strong’ phases are integral to the B → DK formalism. Their origin
lies in the processes referred to as final state-interactions (FSI). These processes allow
various final states of the weak decay to scatter elastically or inelastically via non-weak
interactions. For a channel i → f , the total amplitude includes contributions from pro-
cesses i → f ′ → f , where the decay i → f ′ is weak, and the state f ′ subsequently
scatters into f via the strong (or electromagnetic) interaction. So, while a possible
CP-violating phase is associated with the weak decay i → f ′, the CP-invariant phase
arises in the f ′ → f scattering and is dominated by the strong interaction.

The sub-processes B → DK and D → fD are examples of the channel i → f
discussed above. Consequently, both sub-processes have associated strong phases that
we label as δB and δD, respectively. A special case worth mentioning is the decay to a
CP-eigenstate, such as D → K+K−. From the CP convention used to define Eq. (1.5),
it is trival to conclude that the associated CP invariant phase for CP-even(CP-odd)
final states is zero(π).
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Mixing formalism
• Mass eigenstates in terms of flavour eigenstates (no CP violation)

• Time evolution of mass eigenstates

• Define mixing parameters

3

Chapter 2

Mixing and CP violation in the

standard model

2.1 Introduction

Introduction

2.2 Mixing and CP violation in D decays

Neglecting CP violation, the D mass eigenstates are given by

|D1,2� = |D0�± |D0� (2.1)

and the time evolution of these states by

|D1,2 (t)� = e−iM1,2− 1
2Γ1,2t |D1,2 (t = 0)� (2.2)

where M1,2 and Γ1,2 are the masses and widths of the mass eigenstates.

Introducde mixing parameters x and y

x ≡ M2 −M1

(Γ1 + Γ2) /2
(2.3)

y ≡ Γ2 − Γ1

Γ1 + Γ2
(2.4)
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Two-body mixing
• For Kπ, time dependent DCS/CF ratio is:

4

D0/D0 mixing measurement 12

r (t) = rD +
√
rDy

�tΓ+
x�2 + y�2

4
(tΓ)2 (7.7)

Here is the four body one

r (t) = rD +RK3π
√
rDy

�tΓ+
x�2 + y�2

4
(tΓ)2 (7.8)

or maybe it’s this one

r (t) =
rD +RK3π

√
rDy�tΓ+

�
(1− rD)x2 − (1 + rD) y2

�
(tΓ)2

�
4

1 +RK3π
√
rDy�tΓ+ [(1 + rD) y2 − (1− rD)x2] (tΓ)

2 �
4

(7.9)

7.2 Event selection

7.3 Yield extraction

7.3.1 Combinatoric background

The ∆M background shape is taken from a data-driven method. The four-vector of the

Dz is combined with a slow pion four-vector from each of 500 different events. The ∆M

is then calculated and the resulting non-parametric PDF is used to fit the background

in the data samples.

7.4 Results

DCS decays mixinginterference

Mixing and CP violation in the standard model 3

r (t) = rD +
√
rDy

�tΓ+
x�2 + y�2

4
(tΓ)2 (2.4)

x� ≡ x cos δKπ + y sin δKπ (2.5)

y� ≡ y cos δKπ − x sin δKπ (2.6)

where δKπ is the strong phase difference between the doubly Cabibbo-suppressed (DCS)

and Cabibbo-favoured (CF) processes.

Here is the four body one

r (t) = rD +RK3π
√
rDy

���tΓ+
x���2 + y���2

4
(tΓ)2 (2.7)

x��� ≡ x cos δK3π + y sin δK3π (2.8)

y��� ≡ y cos δK3π − x sin δK3π (2.9)

or maybe it’s this one (it’s the one above).

r (t) =
rD +RK3π

√
rDy�tΓ+

�
(1− rD)x2 − (1 + rD) y2

�
(tΓ)2

�
4

1 +RK3π
√
rDy�tΓ+ [(1 + rD) y2 − (1− rD)x2] (tΓ)

2 �
4

(2.10)

• x and y are rotated by strong phase difference between 
DCS and CF decays

strong phase difference 
between DCS and CF
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Four-body mixing
• For Kπππ, decay usually occurs via intermediate resonances

• Time dependent DCS/CF ratio is now:

5

• Coherence factor appears in 1st order t term
• between 0 and 1
• gives a measure of the coherence of intermediate resonances
• low if decay proceeds via many destructively interfering 

resonances 
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x� ≡ x cos δKπ + y sin δKπ (2.5)

y� ≡ y cos δKπ − x sin δKπ (2.6)

where δKπ is the strong phase difference between the doubly Cabibbo-suppressed (DCS)

and Cabibbo-favoured (CF) processes.

Here is the four body one

r (t) = rD +RK3π
√
rDy

���tΓ+
x���2 + y���2

4
(tΓ)2 (2.7)

x��� ≡ x cos δK3π + y sin δK3π (2.8)

y��� ≡ y cos δK3π − x sin δK3π (2.9)

or maybe it’s this one (it’s the one above).

r (t) =
rD +RK3π

√
rDy�tΓ+

�
(1− rD)x2 − (1 + rD) y2

�
(tΓ)2

�
4

1 +RK3π
√
rDy�tΓ+ [(1 + rD) y2 − (1− rD)x2] (tΓ)

2 �
4

(2.10)

AVERAGE strong phase 
difference between DCS 
and CF
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Current results
• Best measurements of K3π parameters from CLEO

6

Citation: K. Nakamura et al. (Particle Data Group), JP G 37, 075021 (2010) and 2011 partial update for the 2012 edition (URL: http://pdg.lbl.gov)

K−π−2π+ coherence factor RK 3π = 0.36+0.24
−0.30

K−π−2π+ average relative strong phase δK 3π = (118+60
−50)

◦

CP-violation decay-rate asymmetries (labeled by the D0 decay)CP-violation decay-rate asymmetries (labeled by the D0 decay)CP-violation decay-rate asymmetries (labeled by the D0 decay)CP-violation decay-rate asymmetries (labeled by the D0 decay)

ACP (K+K−) = (−0.17 ± 0.31)% (S = 1.3)
ACP (2K0

S ) = (−23 ± 19)%
ACP (π+π−) = (0.2 ± 0.4)%
ACP (2π0) = (0 ± 5)%
ACP (π+π−π0) = (0.3 ± 0.4)%
ACP (ρ(770)+π− → π+π−π0) = (1.2 ± 0.9)%
ACP (ρ(770)0 π0 → π+π−π0) = (−3.1 ± 3.0)%
ACP (ρ(770)−π+ → π+π−π0) = (−1.0 ± 1.7)%
ACP (ρ(1450)+π− → π+π−π0) = (0 ± 70)%
ACP (ρ(1450)0π0 → π+π−π0) = (−17 ± 40)%
ACP (ρ(1450)−π+ → π+π−π0) = (6 ± 9)%
ACP (ρ(1700)+π− → π+π−π0) = (−5 ± 14)%
ACP (ρ(1700)0π0 → π+π−π0) = (13 ± 9)%
ACP (ρ(1700)−π+ → π+π−π0) = (8 ± 11)%
ACP (f0(980)π0 → π+π−π0) = (0 ± 35)%
ACP (f0(1370)π0 → π+π−π0) = (25 ± 18)%
ACP (f0(1500)π0 → π+π−π0) = (0 ± 18)%
ACP (f0(1710)π0 → π+π−π0) = (0 ± 24)%
ACP (f2(1270)π0 → π+π−π0) = (−4 ± 6)%
ACP (σ(400)π0 → π+π−π0) = (6 ± 8)%
ACP (nonresonant π+π−π0) = (−13 ± 23)%
ACP (K+K−π0) = (−1.0 ± 1.7)%
ACP (K∗(892)+K− → K+K−π0) = (−0.9 ± 1.3)%
ACP (K∗(1410)+K− → K+K−π0) = (−21 ± 24)%
ACP ((K+π0)S−wave K− → K+K−π0) = (7 ± 15)%
ACP (φ(1020)π0 → K+K−π0) = (1.1 ± 2.2)%
ACP (f0(980)π0 → K+K−π0) = (−3 ± 19)%
ACP (a0(980)0π0 → K+K−π0) = (−5 ± 16)%
ACP (f ′2(1525)π0 → K+K−π0) = (0 ± 160)%
ACP (K∗(892)−K+ → K+K−π0) = (−5 ± 4)%
ACP (K∗(1410)−K+ → K+K−π0) = (−17 ± 29)%
ACP ((K−π0)S−wave K+ → K+K−π0) = (−7 ± 40)%
ACP (K0

S φ) = (−3 ± 9)%
ACP (K0

S π0) = (0.1 ± 1.3)%
ACP (K−π+) = (0.1 ± 0.7)%
ACP (K+π−) = (2.2 ± 3.2)%
ACP (K−π+π0) = (0.2 ± 0.9)%
ACP (K+π−π0) = (0 ± 5)%

HTTP://PDG.LBL.GOV Page 7 Created: 6/16/2011 12:05

• We can significantly improve these

• Vital inputs for measuring CPV weak phase γ using tree 
level B➔DK decays

TABLE V: Results of the mixing-constained and unconstrained fits to the observables. Values

of external constraints are listed. The uncertainties are those arising from the statistical and
systematic uncertainties on the observables.

Parameter Mixing constrained Mixing unconstrained External input

RKππ0 0.84 ± 0.07 0.78+0.11
−0.25 –

δKππ0

D (◦) 227+14
−17 239+32

−28 –

RK3π 0.33+0.26
−0.23 0.36+0.24

−0.30 –
δK3π
D (◦) 114+26

−23 118+62
−53 –

x (%) 0.96 ± 0.25 −0.8+2.9
−2.5 1.00 ± 0.25

y (%) 0.81 ± 0.16 0.7+2.4
−2.7 0.76 ± 0.18

δKπ
D −151.5+9.6

−9.5 −130+38
−28 −157.5+10.4

−11.0

B(D0 → K−π+) (%) 3.89 ± 0.05 3.89 ± 0.05 3.89 ± 0.05
B(D0 → K+π−) (10−4) 1.47 ± 0.07 1.47 ± 0.07 1.47 ± 0.07
B(D0 → K−π+π0) (%) 13.8 ± 0.5 13.8 ± 0.5 13.9 ± 0.5

B(D0 → K+π−π0) (10−4) 3.05 ± 0.17 3.05 ± 0.17 3.05 ± 0.17
B(D0 → K−π+π+π−) (%) 7.96 ± 0.19 8.03 ± 0.19 8.10 ± 0.20

B(D0 → K+π−π−π+) (10−4) 2.65 ± 0.19 2.63 ± 0.19 2.62 ± 0.20

FIG. 2: The 1σ, 2σ and 3σ allowed regions of (a) (RKππ0, δKππ0

D ) and (b) (RK3π, δK3π
D ) parameter

space.

rameters from the data; this procedure is referred to as the mixing-unconstrained fit. The
∆F

CP observables are dependent on the value of δKπ
D and its uncertainty from the normal-

isation method that used the measured values of S(CP |K−π+). Therefore, initially the
value and uncertainties of ∆F

CP are recalculated assuming cos δKπ
D = 0 ± 1 and the mixing-

unconstrained fit is performed. The resulting value of δKπ
D is used to recalculate ∆F

CP and the
mixing-unconstrained fit is repeated. This procedure is iterated until the parameter values
returned by the fit no longer changed within the quoted precision. The results of the final
iteration are shown in Tab. V. The best-fit values of x, y, and δKπ

D are: x = (−0.8+2.9
−2.5)%,
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Ratio extraction

• Where d is detection asymmetry (K+π-)/(K-π+)
• ALL* production and detection asymmetries cancel!
*We assume the same selection efficiency for DCS and favoured (assign systematic based on potential 
Dalitz plot differences)

Chapter 7

D0/D0 mixing measurement

7.1 Introduction

blaa bllaaa D0D0
mixing.

This one is for detector asymmetry of the final state.

ND0→K+π+π−π−

ND0→K−π+π+π−
=

1

r
d (7.1)

ND0→K−π+π+π−

ND0→K+π+π−π−
=

1

r

1

d
(7.2)

ND0→K+π+π−π−

ND0→K−π+π+π−
× ND0→K−π+π+π−

ND0→K+π+π−π−
=

1

r2
(7.3)

This one is for production and detection asymmetry of the slow pion.

ND0→K−π+π+π−

ND0→K−π+π+π−
=

1

r
p (7.4)

ND0→K+π+π−π−

ND0→K+π+π−π−
= r p (7.5)

ND0→K−π+π+π−

ND0→K−π+π+π−

�
ND0→K+π+π−π−

ND0→K+π+π−π−
=

1

r2
(7.6)

Here is the two body mixing formula

11

r = DCS/CF
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Flavour tagging
• We take our D0s from strong decays D*+➔D0π+ (and the charge conjugate)

then we know the flavour of the D

since the π is low energy, we call it a “slow pion”

• Signal D* decays are characterised by a narrow peak in the D*-D0 mass distribution (“delta mass”)

• Use the 2D D0 mass vs delta mass plane to find events which are both D* and D0 signal decays

8

signal

random slow 
pion background

fake D0 
background

combinatorial 
background
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LHCb detector

9
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2011 data
• ~1fb-1 shown below

• Majority of events in DCS sample are CF D0 decays combined with 
a random background slow pion

10

)[MeV]0m(D
1800 1850 1900

m
[M
eV
]

138
140
142
144
146
148
150
152
154
156
158

0

10

20

30

40

50

60

)[MeV]0m(D
1800 1850 1900

m
[M
eV
]

138
140
142
144
146
148
150
152
154
156
158

0

500

1000

1500

2000

2500

3000

3500

4000

CF DCS



IOP meetingT R Hampson 03/04/2012

Fit projections

11
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Lifetime binning
• Fit yields in D0 lifetime bins to extract parameters

• Use toy study to maximise our sensitivity by optimising our lifetime binning

• Note that the size of the coherence factor determines our sensitivity to the 
interference term

12

Kπ Kπππ

Mixing and CP violation in the standard model 3

r (t) = rD +
√
rDy

�tΓ+
x�2 + y�2

4
(tΓ)2 (2.4)

x� ≡ x cos δKπ + y sin δKπ (2.5)

y� ≡ y cos δKπ − x sin δKπ (2.6)

where δKπ is the strong phase difference between the doubly Cabibbo-suppressed (DCS)

and Cabibbo-favoured (CF) processes.

Here is the four body one

r (t) = rD +RK3π
√
rDy

���tΓ+
x���2 + y���2

4
(tΓ)2 (2.7)

x��� ≡ x cos δK3π + y sin δK3π (2.8)

y��� ≡ y cos δK3π − x sin δK3π (2.9)

or maybe it’s this one (it’s the one above).

r (t) =
rD +RK3π

√
rDy�tΓ+

�
(1− rD)x2 − (1 + rD) y2

�
(tΓ)2

�
4

1 +RK3π
√
rDy�tΓ+ [(1 + rD) y2 − (1− rD)x2] (tΓ)

2 �
4

(2.10)

D0/D0 mixing measurement 12

r (t) = rD +
√
rDy

�tΓ+
x�2 + y�2

4
(tΓ)2 (7.7)

Here is the four body one

r (t) = rD +RK3π
√
rDy

�tΓ+
x�2 + y�2

4
(tΓ)2 (7.8)

or maybe it’s this one

r (t) =
rD +RK3π

√
rDy�tΓ+

�
(1− rD)x2 − (1 + rD) y2

�
(tΓ)2

�
4

1 +RK3π
√
rDy�tΓ+ [(1 + rD) y2 − (1− rD)x2] (tΓ)

2 �
4

(7.9)

7.2 Event selection

7.3 Yield extraction

7.3.1 Combinatoric background

The ∆M background shape is taken from a data-driven method. The four-vector of the

Dz is combined with a slow pion four-vector from each of 500 different events. The ∆M

is then calculated and the resulting non-parametric PDF is used to fit the background

in the data samples.

7.4 Results
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Summary and plans

• Use our huge DCS sample to measure DCS/CF 
ratio in lifetime bins

sample size will more than double by end of 
2012

• We plan to significantly improve coherence factor 
and average strong phase difference measurements

vital input for CKM angle γ
• Plan to be ready for summer conferences

13

• D mixing mixing already well established 
(although no single 5σ measurement)
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Back up

14
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Slow π asymmetry

• Where p is production AND detection asymmetry π+/π-

• All efficiencies cancel again (gives exactly the same result)

Chapter 7

D0/D0 mixing measurement

7.1 Introduction

blaa bllaaa D0D0
mixing.

This one is for detector asymmetry of the final state.

ND0→K+π+π−π−

ND0→K−π+π+π−
=

1

r
d (7.1)

ND0→K−π+π+π−

ND0→K+π+π−π−
=

1

r

1

d
(7.2)

ND0→K+π+π−π−

ND0→K−π+π+π−
× ND0→K−π+π+π−

ND0→K+π+π−π−
=

1

r2
(7.3)

This one is for production and detection asymmetry of the slow pion.

ND0→K−π+π+π−

ND0→K−π+π+π−
=

1

r
p (7.4)

ND0→K+π+π−π−

ND0→K+π+π−π−
= r p (7.5)

ND0→K−π+π+π−

ND0→K−π+π+π−

�
ND0→K+π+π−π−

ND0→K+π+π−π−
=

1

r2
(7.6)

Here is the two body mixing formula
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Cut optimisation
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• Use D0 mass sidebands from 2010 data as background sample and Monte 
Carlo signal events to tune selection cuts

• Perform 2D fit to obtain signal/background ratio

use to scale signal and background in optimisation
scale signal to DCS branching fraction
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Additional criteria
• Tighten PID cuts for all daughters

• Require events to have been triggered by the D➔hhhh trigger

significantly improves S/B
• For DCS we expect large contribution from doubly misidentified CF 

decays (K↔π)

veto any candidates which lie within ±30 MeV of PDG D0 mass 
after swapping mass hypotheses of K,π

• Keep only one candidate per event

best D0 vertex chi2 (or D* vertex chi2 if the same D0)
• Then separate CF and DCS decays...

17
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htemp
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Dstar_DELTAM

Fitting
• Perform a 2D unbinned maximum likelihood fit to the mass vs delta 

mass plane

• Signal in mass and delta mass described by the sum of a Gaussian 
and a Crystal Ball function (fix for DCS after fit to CF)

• Background in D0 mass parameterised with a 1st order polynomial

• Delta mass background is modelled using data

18

take D0 4-vector from one event
combine with slow pion 4-vector 
from another event
use the same shape for both CF and 
DCS
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