

Four-body D mixing at LHCb

Tom Hampson

03/04/2012

D decays to $K\pi$

• D meson decays to the $K\pi$ final state can proceed directly or via mixing

• For doubly Cabibbo-supressed (DCS) decays these two processes can be comparable

Mixing formalism

• Mass eigenstates in terms of flavour eigenstates (no CP violation)

$$|D_{1,2}\rangle = |D^0\rangle \pm |\overline{D}^0\rangle$$

• Time evolution of mass eigenstates

$$|D_{1,2}(t)\rangle = e^{-iM_{1,2} - \frac{1}{2}\Gamma_{1,2}t} |D_{1,2}(t=0)\rangle$$

• Define mixing parameters

$$x \equiv \frac{M_2 - M_1}{(\Gamma_1 + \Gamma_2)/2}$$
 and $y \equiv \frac{\Gamma_2 - \Gamma_1}{\Gamma_1 + \Gamma_2}$

Two-body mixing

• For $K\pi$, time dependent DCS/CF ratio is:

$$r(t) = r_D + \sqrt{r_D}y't\Gamma + \frac{x'^2 + y'^2}{4}(t\Gamma)^2$$
DCS decays interference mixing

• x and y are rotated by strong phase difference between DCS and CF decays

$$x' \equiv x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$$
 strong phase difference between DCS and CF $y' \equiv y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$

Four-body mixing

- For $K\pi\pi\pi$, decay usually occurs via intermediate resonances
- Time dependent DCS/CF ratio is now:

$$r(t) = r_D + R_{K3\pi} \sqrt{r_D} y''' t\Gamma + \frac{x'''^2 + y'''^2}{4} (t\Gamma)^2$$

- Coherence factor appears in 1st order t term
 - between 0 and 1
 - gives a measure of the coherence of intermediate resonances
 - low if decay proceeds via many destructively interfering resonances

$$x''' \equiv x \cos \delta_{K3\pi} + y \sin \delta_{K3\pi}$$
 AVERAGE strong phase difference between DCS and CF

Current results

• Best measurements of $K3\pi$ parameters from CLEO

$$K^-\pi^-2\pi^+$$
 coherence factor $R_{K3\pi} = 0.36^{+0.24}_{-0.30}$ $K^-\pi^-2\pi^+$ average relative strong phase $\delta^{K3\pi} = (118^{+60}_{-50})^\circ$

Ratio extraction

$$\frac{N_{\bar{D}^0 \to K^+ \pi^+ \pi^- \pi^-}}{N_{\bar{D}^0 \to K^- \pi^+ \pi^+ \pi^-}} = \frac{1}{r} d$$

r = DCS/CF

$$\frac{N_{D^0 \to K^- \pi^+ \pi^+ \pi^-}}{N_{D^0 \to K^+ \pi^+ \pi^- \pi^-}} = \frac{1}{r} \frac{1}{d}$$

$$\frac{N_{\overline{D}^0 \to K^+ \pi^+ \pi^- \pi^-}}{N_{\overline{D}^0 \to K^- \pi^+ \pi^+ \pi^-}} \times \frac{N_{D^0 \to K^- \pi^+ \pi^+ \pi^-}}{N_{D^0 \to K^+ \pi^+ \pi^- \pi^-}} = \frac{1}{r^2}$$

- Where d is detection asymmetry $(K^+\pi^-)/(K^-\pi^+)$
- ALL* production and detection asymmetries cancel!

*We assume the same selection efficiency for DCS and favoured (assign systematic based on potential Dalitz plot differences)

Flavour tagging

- We take our D^0 s from strong decays $D^{*+} \rightarrow D^0 \pi^+$ (and the charge conjugate) then we know the flavour of the Dsince the π is low energy, we call it a "slow pion"
- Signal D^* decays are characterised by a narrow peak in the D^* - D^0 mass distribution ("delta mass")
- Use the 2D D^0 mass vs delta mass plane to find events which are both D^* and D^0 signal decays

LHCb detector

2011 data

- $\sim 1 \, \text{fb}^{-1}$ shown below
- Majority of events in DCS sample are CF D^0 decays combined with a random background slow pion

Fit projections

Lifetime binning

- Fit yields in D^0 lifetime bins to extract parameters
- Use toy study to maximise our sensitivity by optimising our lifetime binning
- Note that the size of the coherence factor determines our sensitivity to the interference term

$$r(t) = r_D + \sqrt{r_D}y't\Gamma + \frac{x'^2 + y'^2}{4}(t\Gamma)^2$$

$$r(t) = r_D + R_{K3\pi} \sqrt{r_D} y''' t \Gamma + \frac{x'''^2 + y'''^2}{4} (t\Gamma)^2$$

Summary and plans

• D mixing mixing already well established (although no single 5σ measurement)

sample size will more than double by end of

• We plan to significantly improve coherence factor and average strong phase difference measurements

vital input for CKM angle γ

• Plan to be ready for summer conferences

Backup

Slow π asymmetry

$$\frac{N_{D^0 \to K^- \pi^+ \pi^+ \pi^-}}{N_{\bar{D}^0 \to K^- \pi^+ \pi^+ \pi^-}} = \frac{1}{r} p$$

$$\frac{N_{D^0 \to K^+ \pi^+ \pi^- \pi^-}}{N_{\bar{D}^0 \to K^+ \pi^+ \pi^- \pi^-}} = r \, p$$

$$\frac{N_{D^0 \to K^- \pi^+ \pi^+ \pi^-}}{N_{\bar{D}^0 \to K^- \pi^+ \pi^+ \pi^-}} / \frac{N_{D^0 \to K^+ \pi^+ \pi^- \pi^-}}{N_{\bar{D}^0 \to K^+ \pi^+ \pi^- \pi^-}} = \frac{1}{r^2}$$

- Where p is production AND detection asymmetry π^+/π^-
- All efficiencies cancel again (gives exactly the same result)

Cut optimisation

- Use D^0 mass sidebands from 2010 data as background sample and Monte Carlo signal events to tune selection cuts
- Perform 2D fit to obtain signal/background ratio

use to scale signal and background in optimisation scale signal to DCS branching fraction

Additional criteria

- Tighten PID cuts for all daughters
- Require events to have been triggered by the *D*→hhhh trigger significantly improves S/B
- For DCS we expect large contribution from doubly misidentified CF decays $(K \leftrightarrow \pi)$

veto any candidates which lie within ± 30 MeV of PDG D^0 mass after swapping mass hypotheses of K,π

- Keep only one candidate per event
 - best D^0 vertex chi² (or D^* vertex chi² if the same D^0)
- Then separate CF and DCS decays...

Fitting

- Perform a 2D unbinned maximum likelihood fit to the mass vs delta mass plane
- Signal in mass and delta mass described by the sum of a Gaussian and a Crystal Ball function (fix for DCS after fit to CF)
- Background in D^0 mass parameterised with a 1st order polynomial
- Delta mass background is modelled using data

take D^0 4-vector from one event combine with slow pion 4-vector from another event

use the same shape for both CF and DCS

2011 data CF

