Boosted $H \rightarrow b\bar{b}$ analysis

Brendan O'Brien - University of Edinburgh

April 2 - 4, 2012

포네크

イロン イヨン イヨン イヨン

Outline

Introduction Analysis *b*-tagging in boosted regime Outlook

Introduction

Why $H \rightarrow b\bar{b}$? Why boosted $H \rightarrow b\bar{b}$?

Analysis

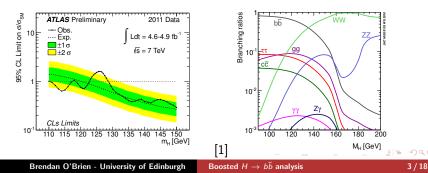
Analysis overview Working with jet substructure Current status

b-tagging in boosted regime *b*-tagging in boosted regime

Outlook

Outlook

-


< 17 ×

이 물 이 이 물 이 물

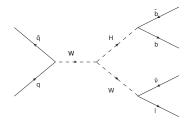
Why $H \rightarrow b\bar{b}$? Why boosted $H \rightarrow b\bar{b}$?

Why $H \rightarrow b\bar{b}$?

- Present fits to data, including exclusions from LEP, Tevatron, and LHC predict a Higgs boson in a small mass window.
- ▶ In this range, considered to be "low mass", the dominant decay branching ratio is for the $H \rightarrow b\bar{b}$ process.
- The most promising production method is via $q\bar{q} \rightarrow VH$.

Why $H \rightarrow b\bar{b}$? Why boosted $H \rightarrow b\bar{b}$?

Why boosted $H ightarrow bar{b}$?


- ► The H → bb̄ process will produce two b-jets, which must be distinguished from other background processes.
- ▶ Many background processes exist that also produce two *b*-jets.
- ► Two *b*-jets resulting from a high P_T Higgs (≥ 200 GeV) will be close together, forming a so-called fat-jet.
- ► This *b*-jet closeness requirement allows powerful separation from background processes, at the expense of ~ 95% of the signal.

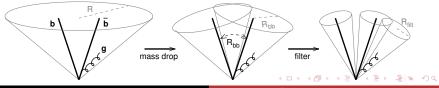
비로 서로에 서로에 사람에 서비해

Analysis overview Working with jet substructure Current status

Analysis overview

- Start with $q\bar{q} \rightarrow VH$ production.
- Find leptonically decaying vector-boson (e or μ).
- Find hadronically decaying Higgs $(H \rightarrow b\bar{b})$.

 $qar{q}
ightarrow W\!H
ightarrow bar{b} lar{
u}$ process

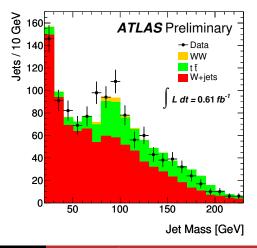

- Select events with large Higgs P_T, and a Cambridge-Aachen (C-A) reconstructed fat-jet containing both *b*-jets.
- Use substructure techniques to split the fat-jet into subjets and determine their invariant mass.

Analysis overview Working with jet substructure Current status

Working with jet substructure

Brendan O'Brien - University of Edinburgh

- Jets are reconstructed using C-A algorithm (R = 1.2).
- Often ATLAS jets are clustered using inverse P_T (AntiK_T).
 C-A jets are clustered using physical distance only.
- Clustering history is searched in reverse until a point where a significant mass drop is identified (> ¹/₃).
- Smaller R used to re-cluster the remaining constituents, filtering out the irrelevant radiation.
- Three highest P_T subjets used to form Higgs candidate.

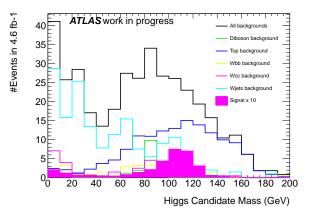


Boosted $H \rightarrow b\bar{b}$ analysis

Analysis overview Working with jet substructure Current status

Jet mass distribution

- Result shown in conference in 2011 [2].
- Mass distribution for split and filtered jets with no b-tagging applied.


Analysis overview Working with jet substructure Current status

Selection for $WH \rightarrow I \nu b \bar{b}$

- Standard e, μ, and jet selections following ATLAS recommendations (see backup slides), then:
- ▶ One charged lepton with $P_T > 20$ GeV and $E_T^{miss} > 25$ GeV
- W candidate with $M_T > 40$ GeV
- ► One fat-jet with P_T > 180 GeV, containing at least two subjets.
- ▶ Veto events with any AntiK_T jets with P_T > 20 GeV and not within 1.2 of the signal C-A jet.
- $\Delta \phi_{W,H} > \frac{2\pi}{3}$
- W candidate with $P_T > 200 \text{ GeV}$
- b-tagging: MV1 (Multi Variate tagger) weight > 0.60 (70% efficiency).

Analysis overview Working with jet substructure Current status

M_H with $\geq 1 \ b$ -tag plot

3

イロン イヨン イヨン イヨン

Analysis overview Working with jet substructure Current status

M_H with 2 *b*-tag plot

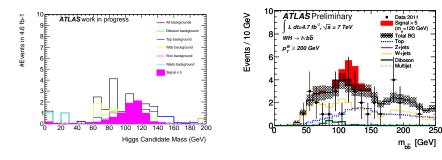


Figure: Boosted analysis with 2 *b*-tags

Figure: Unboosted analysis in highest P_T bin [3]

Analysis overview Working with jet substructure Current status

Current status

- All results shown here are a work in progress, and reflect continuing efforts in this analysis.
- ▶ Shown for boosted $WH \rightarrow l\nu b\bar{b}$ only. $ZH \rightarrow l^+l^-b\bar{b}$ and $ZH \rightarrow \nu\bar{\nu}b\bar{b}$ analyses are being developed also, but less mature.
- ► Boosted $Z \rightarrow b\bar{b}$ analysis is also ongoing in ATLAS, expecting observation and constraints on WH/ZH systematics.
- ► Working on neural network, and boosted decision tree approach in parallel. Expected to improve the S/R.
- Planning data-driven background determination.

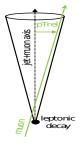
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

b-tagging in boosted regime

ΔR dependence of *b*-tagging

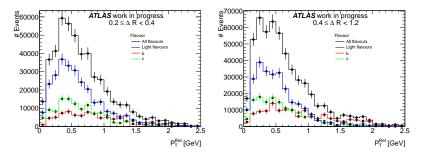
- Data/MC scale factors are required for *b*-tagging efficiency in subjets.
- Current *b*-tagging calibrations are derived based on $AntiK_T$ jets with R = 0.4. These do agree well with C-A jets in the $\Delta R > 0.4$ regime.
- ▶ But many subjets have $\Delta R < 0.4$. Closer jets have more ambiguous track-jet matching and are less efficient to *b*-tag.
- ► Need to validate *b*-tagging in low Δ*R* regime with subjets, in order to use it in this (and other) analysis involving boosted jets.

b-tagging in boosted regime


ΔR dependence of *b*-tagging

- ▶ Data/MC comparisons have been done on *b*-tagging relevant quantities in low and high △*R* regimes. Agreement reasonable.
- Some data/MC discrepancies, but the integral *b*-tagging weight has agreement within 5%.
- Quantify extra systematic for $\Delta R < 0.4$ region in the short term, derive ΔR dependent scale factors with the P_T^{Rel} method in the long term.

b-tagging in boosted regime


- P_T^{Rel} method can be used to obtain data/MC scale factors for the *b*-tagging efficiency. So far this has only been made use of for AntiK_T jets R = 0.4.
- *P*^{*Rel*}_{*T*} makes use of flavour templates obtained by investigating the momentum of muons, transverse to muon-jet axis in leptonic *b* decays.
- Investigations into the applicability of using the P_T^{Rel} method for subjets are underway.

<ロ> (四) (四) (三) (三) (三) (三)

b-tagging in boosted regime

P_T^{Rel} method

- Above studies used pythia jetjet monte carlo.
- Preliminary templates have been derived for various ΔR ranges, and discriminating power between flavours looks reasonable even at low ΔR.
- More investigations and detailed template derivation needed.

Outlook

Outlook

Boosted substructure analysis is a promising technique, and the analysis is becoming more mature.

- Boosted $H \rightarrow b\bar{b}$ analysis:
 - Optimize cuts. and work towards $\frac{S}{\sqrt{B}}$ improvement.
 - Evaluate substructure systematics.
 - Aim to combine boosted analysis with unboosted analysis in highest P_T bin for summer conferences.
- Boosted b-tagging related:
 - ► Use current P_T^{Rel} derived scale factors with the subjets, but inflate systematic for low ΔR region (< 0.4), for short term.</p>
 - Explicitly derive ΔR dependent P_T^{Rel} calibration for C-A subjets, ~ 6 months.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

References

An update to the combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC using up to 4.9 fb⁻¹ of *pp* collision data at $\sqrt{s} = 7$ TeV.

Technical Report ATLAS-CONF-2012-019, CERN, Geneva, Mar 2012.

Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a *b*-quark pair with the ATLAS detector at the LHC.

Technical Report ATLAS-CONF-2011-103, CERN, Geneva, Jul 2011.

Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a *b*-quark pair using up to 4.7 fb⁻¹ of *pp* collision data at $\sqrt{s} = 7$ TeV with the ATLAS detector at the LHC. Technical Report ATLAS-CONF-2012-015, CERN, Geneva, Mar 2012.

Backup slides

Backup slides

- 문 | 권

Lepton selection

Electrons

- ▶ *E_T* > 20 GeV
- $\blacktriangleright \ |\eta| <$ 2.47, excluding 1.37 $< |\eta| <$ 1.52
- ▶ Author 1 || 3, isEM && track match, $\frac{\sum E_T}{E_T} < 0.14$, $\frac{\sum P_T}{P_T} < 0.1$
- Muons
 - Staco || Muid algorithms
 - ▶ *P*_T > 20 GeV

•
$$|\eta| < 2.7$$

• $\frac{\sum E_T}{E_T} < 0.14, \ \frac{\sum P_T}{P_T} < 0.1$

◆□> ◆□> ◆三> ◆三> 三三 のへの

Jet selection

- ► AntiK_T4 jets
 - Veto on bad loose
 - Leading jet $P_T > 45$ GeV
 - ▶ JVF < 0.75
 - $\blacktriangleright |\eta| < 2.5$
 - $\Delta R > 0.7$
- Fat jets
 - $\blacktriangleright |\eta| < 2.5$

◆□> ◆□> ◆三> ◆三> 三三 のへの

Other selections

- Primary vertex
 - At least 3 reconstructed tracks
- Triggers (depending on period)
 - Electrons: EF_e20_medium, EF_e22_medium, EF_e22vh_medium1 || EF_e45_medium1
 - Muons: EF_mu18_MG, EF_mu18_MG_medium

(E) < E)</p>