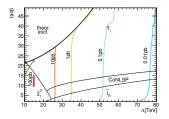
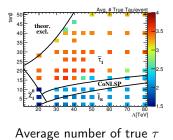
Searching for SUSY with 2 τ -leptons at ATLAS

Anthony Rose Supervisor: Fabrizio Salvatore in collaboration with DESY and the University of Bonn

IoP HEPP & APP meeting

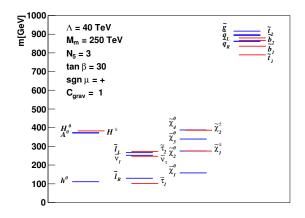

University of Sussex

April 4, 2012

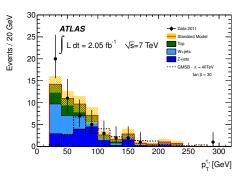

- τ -leptons play an important role in various SUSY scenarios
- Their production can be enhanced with respect to the light leptons
- In gauge mediated SUSY breaking (GMSB) models the $\tilde{\tau}_1$ can be the only particle with significant coupling to the lighest supersymmetric particle (LSP)
- Very few Standard Model processes have multiple τ and missing energy in the final state
- Analysis performed with 2.05 fb⁻¹ data collected at the ATLAS detector during 2011
- Note: ATLAS-CONF-2012-002
- Paper: arXiv:1203.6580v1 [hep-ex]

Gauge-mediated SUSY breaking

- LSP is always a very light gravitino (eV scale)
- Next to lightest SUSY particle (NLSP) determines phenomenology
- 6 parameters in simplest approach
- A and $\tan \beta$ have the largest influence on mass hierarchy
- For the signal grid the other parameters have been fixed to ensure $\tilde{\ell}_R$ or $\tilde{\tau}_1$ NLSP



The GMSB NLO cross section in the $\Lambda - \tan \beta$ plane for $M_{mes} = 250$ TeV, $N_5 = 3$, $C_{grav} = 1$)



Benchmark points

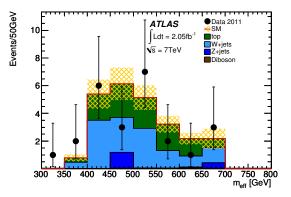
Signal sensitivity studies were performed on a GMSB signal grid, with a point being chosen as a benchmark. This point, known as GMSB4030 has a $\tilde{\tau}_1$ NLSP and lots of τ -leptons in the final state

- Jet $+ E_T^{miss}$ trigger
- Trigger plateau cuts:
 - $E_T^{miss} > 130 \text{ GeV}$
 - $jet_1 p_T > 130 \text{ GeV}$
- $jet_2 p_T > 30 \text{ GeV}$
- Light lepton veto (e, μ)
- \geq 2 au, p_T >20 GeV
- $\Delta \phi(\text{jet}_1, E_T^{miss}) \ge 0.4$ and $\Delta \phi(\text{jet}_2, E_T^{miss}) \ge 0.4$
- $m_{eff} > 700 \text{ GeV}$
- $m_T(\tau_1, E_T^{miss}) + m_T(\tau_2, E_T^{miss}) > 80 \text{ GeV}$

- $m_{\rm T}$ formed by $E_{\rm T}^{\rm miss}$ and the $p_{\rm T}$ of the tau lepton (τ) is defined as $m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}(1 \cos(\Delta\phi(\tau, p_{\rm T}^{\rm miss})))}$
- $m_{\rm eff}$ is calculated as the sum of $E_{\rm T}^{\rm miss}$ and the magnitude of the $p_{\rm T}$ of the two leading jets and all selected taus

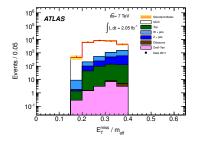
Background estimation & systematics

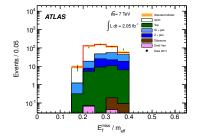
Background estimation

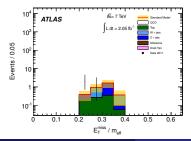

- Main SM background is due to W+jets and top (single top and $t\bar{t}$)
- Data driven background estimations performed by defining control regions in which a particular background was dominanat
- W and top CR defined by inverting m_{eff} cut
- Regions then separated by b-jet requirement
- QCD CR defined by also inverting $\Delta\phi$ cut

Systematics

- MC scaling
- Jet energy scale, jet energy resolution
- au energy scale, au identification uncertainty, au fake uncertainty
- Pileup
- Luminosity

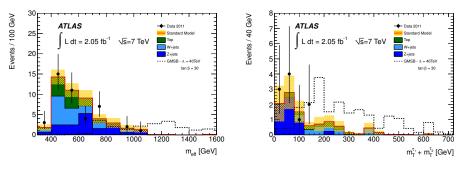

W/top background estimation


- Subtract non-W/top MC contribution from number of events in data
- Scale W and top MC simultaneously



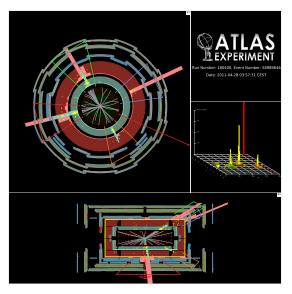
 m_{eff} in the W/top CR, scaled

QCD background estimation



QCD control regions: The E_T^{miss}/m_{eff} distribution in the 0-tau sideband where the MC is scaled to data (top left), in the 1-tau sideband where the calculated fake rate and resulting sclaing factors have been applied (top right), and in the 2-tau sideband (bottom left).

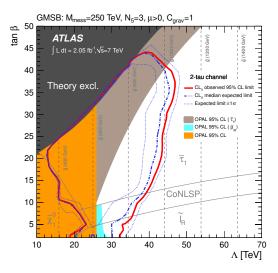
	All MC	Data	GMSB4030
Preselection	116967 ± 4280	116655	400.0 ± 9.5
Lepton Veto	95534 \pm 4258	99078	123.6 ± 6.4
$N_{ au} \ge 1$	4038 ± 172	3647	71.6 ± 5.7
$N_{ au} \ge 2$	53.0 ± 6.7	52	25.1 ± 3.5
$\Delta \phi(E_T^{miss}, \mathrm{jet}1/2) > 0.4$	46.7 ± 6.2	43	22.2 ± 3.4
$m_{eff}>700{ m GeV}$	10.2 ± 2.1	10	21.7 ± 3.4
$m_{T1}+m_{T2}>80\mathrm{GeV}$	$5.3\pm1.3(stat){\pm}2.2(sys)$	3	$20.8\pm3.4\pm5.4$


Results

 $m_{\rm eff}$ distribution after the $\Delta \phi$ cut

 $m_{T1} + m_{T2}$ distribution after the m_{eff} cut

Event display



Event display for run 180400, event 58989646

Anthony Rose (University of Sussex)

Di-tau SUSY search

Gauge-mediated SUSY breaking

Expected and observed 95% CL limits on the minimal GMSB model parameters Λ and $\tan\beta$ for $\tilde{\tau}_1^1$ and $\tilde{\ell}_R$ NLSP .

Anthony Rose (University of Sussex)

Conclusion

- We have presented a search for SUSY in events with 2 τ , high p_T jets and large E_T^{miss}
- Backgrounds well understood
- We find 3 events in the signal region, in good agreement with SM prediction $5.3 \pm 1.3(\text{stat}) \pm 2.2(\text{sys})$
- A 95% CL lower limit of 32 TeV is set on the GMSB breaking scale Λ independent of tan β. This limit provides the most stringent test to date in a large part of the considered parameter space.
- Analysis presented at 2012 Winter conferences (ATLAS-CONF-2012-002)
- Paper on the arXiv (1203.6580v1), and has been submitted to PLB (CERN-PH-EP-2012-054)
- An update using the full 5 fb^{-1} 2011 dataset is underway