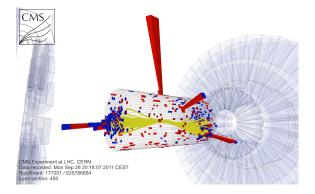


1/21

<ロ> (四) (四) (三) (三) (三) (三)

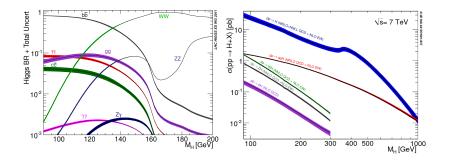

Search for the Standard Model Higgs Boson in the two photon decay mode

Nicholas Wardle

QM IOP - April 4, 2012

2/21

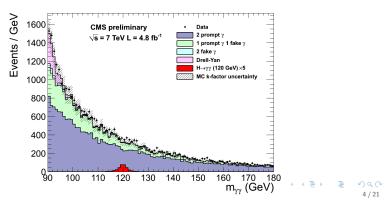
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □


- Introduction
- Analysis Strategy
- Results
- Conclusions

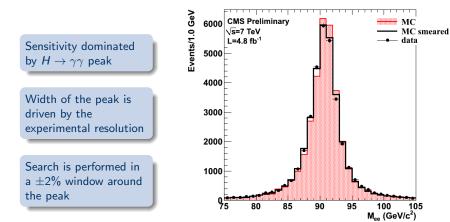
Introduction

Search performed at CMS on $4.8 fb^{-1} pp$ dataset at $\sqrt{s} = 7 TeV$

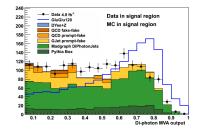
Update from recent paper.

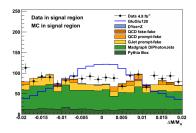


 $rac{p_T}{m_{\gamma\gamma}} > rac{1}{3}, rac{1}{4}$


Event Selection

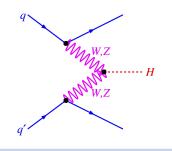
- ► Two high p_T photons
- MVA ID quality cut to reject fakes.
 - isolation variables to reject jets
 - shower shape variables for π^0
- Vertex from track information.
 - Correct vertex found 85% of the time.


Search Strategy

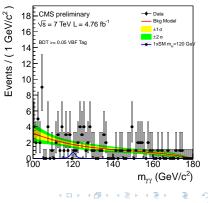


Event Classification

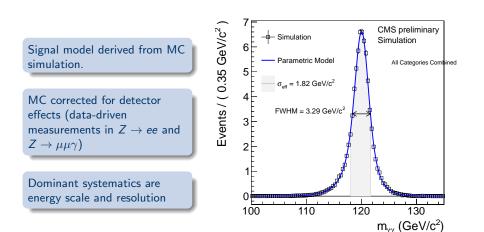
- Photon Kinematics
 - $p_T^{\gamma_1}/m_{\gamma\gamma}, p_T^{\gamma_2}/m_{\gamma\gamma}$ $\eta^{\gamma_1}, \eta^{\gamma_2}, \cos(\Delta\phi)$
 - $\blacktriangleright \eta^{1}, \eta^{12}, \cos(\Delta \phi)$
- Photon Discriminator
 - $IDMVA^{\gamma_1}, IDMVA^{\gamma_2}$
- Event Resolution
 - $\sigma(correct)/m_{\gamma\gamma}, \sigma(wrong)/m_{\gamma\gamma}$
 - vtxprob



Combine with (Δ_M/M_H) using a second BDT Inputs invariant with m_H

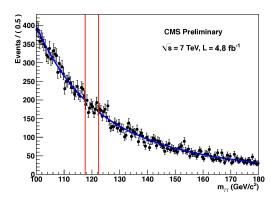


Di-jet Category


Look for two high E_T forward Jets.

Jets back to back with di-photon system.

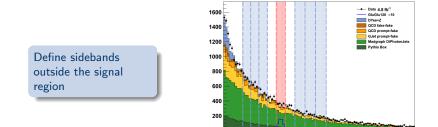
Signal Model



・ロト ・回ト ・ヨト ・ヨト

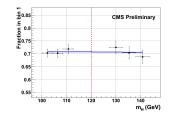
Background Model - Normalization

$$f_{bkg}(m_{\gamma\gamma}) = N(m_{\gamma\gamma}^{-a} + bm_{\gamma\gamma}^{-c})$$

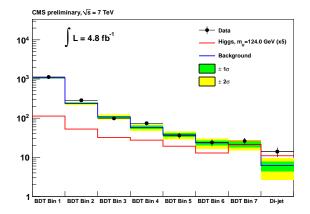

Total background normalization taken from fit to sidebands.

Systematic included for remaining potential bias from wrong function choice.

Single parameter in the Likelihood

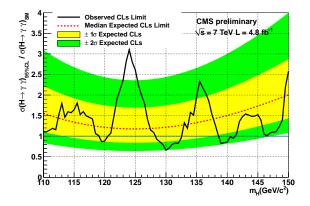

Background Model - Shape

0 90 100 110 120 130 140 150 160 170 180 190 M_{rr}


Shape in BDT extracted from linear fits in m_H

- Only assumption is variation as a function of mass is linear
- Systematic included to account for potential higher order terms

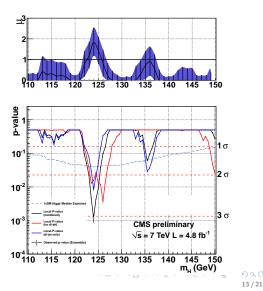
Results


Categories optimized so as to achieve the best sensitivity to signal.

Likelihood constructed as a combination of counting experiments.

11/21

Exclusion Limits


- Exclusion limits extracted in the range $110 < m_H < 150$
- Expected exclusion limit less than $1.5 \times SM$ in $110 < m_H < 140$
- Several ranges excluded at 95% confidence level (CL).

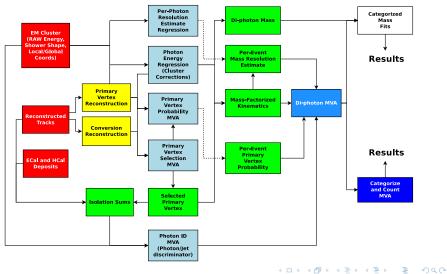
12/21

Significance Scan

- Significance and best-fit signal strength are extracted in the range 110 < m_H < 150
- Largest local significance around 3σ
- Look elsewhere effect reduces this to 1.9σ

Conclusions

- A search for the SM Higgs has been performed on $4.8 fb^{-1}$ of pp collisions at CMS
- ► Exclusions placed on the SM Higgs at several ranges of mass hypotheses.
- ▶ No significant excess is observed in the search range.
- Can expect to become sensitive to SM Higgs by summer with twice the current dataset.
- ► The analysis is described in CMS public document HIG-12-001.

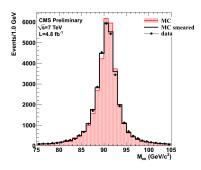


Backup

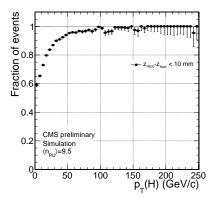
< □ > < 部 > < 書 > < 書 > 差 → ○ < ♡ < ♡ 15/21

Analysis Workflow

VBF Selection


Jet Tag

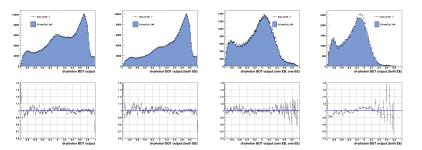
 $\begin{array}{l} E_T > 30/20 \, GeV \\ m_{jj} > 350 \, GeV \\ |\eta_1^j - \eta_2^j > 3.5| \\ |\phi_{jj} - \phi_{\gamma\gamma} > 2.6| \\ |0.5(\eta_1^j - \eta_2^j) - \eta_{\gamma\gamma}| < 2.5 \end{array}$


<ロ><合><き><合><き><き><き><き><き> 17/21

Signal MC Corrections

MC additional smearing measured using $Z \rightarrow ee$ MC-data likelihood fit in categories.

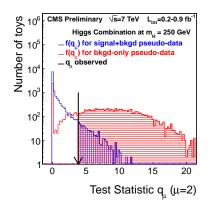
Vtx Probabilities measured in $Z \rightarrow \mu\mu\gamma$ as a function of boson p_T , MC reweighted.


Signal Systematics

Sources of systematic uncertainty	Uncertainty	
Per photon	Barrel	Endcap
Photon identification efficiency	1.0%	2.6%
Energy resolution $(\Delta \sigma / E_{MC})$ $R_9 > 0.94$ (low η , high η)	0.22%, 0.61%	0.91%, 0.34%
$R_9 < 0.94 (\text{low } \eta, \text{high } \eta)$	0.24%, 0.59%	0.30%, 0.53%
Energy scale $((E_{data} - E_{MC})/E_{MC})$ $R_9 > 0.94$ (low η , high η)	0.19%, 0.71%	0.88%, 0.19%
$R_9 < 0.94$ (low η , high η)	0.13%, 0.51%	0.18%, 0.28%
Photon identification MVA	± 0.025 (shape shift)	
(Effect of up to 11% event class migration.)		
Photon energy resolution MVA	$\pm 10\%$ (shape scaling)	
(Effect of up to 8% event class migration.)		
Per event		
Integrated luminosity	4.5%	
Vertex finding efficiency	0.4%	
Trigger efficiency One or both photons $R_9 < 0.94$ in endcap	0.4%	
Other events	0.1%	
Dijet selection		
Dijet-tagging efficiency VBF process	10%	
Gluon-gluon fusion process	70%	
Production cross sections	Scale	PDF
Gluon-gluon fusion	+12.5% -8.2%	+7.9% -7.7%
Vector boson fusion	+0.5% -0.3%	+2.7% -2.1%
Associated production with W/Z	1.8%	4.2%
Associated production with tī	+3.6% -9.5%	8.5%
Scale and PDF uncertainties	$(y, p_{\rm T})$ -differential	
(Effect of up to 16% event class migration.)	5,1-7	

MVA Validation using $Z \rightarrow ee$

MC simulation is validated using $Z \rightarrow ee$ MC-data comparisons.



21/21

CLs

Limit setting with the CLs procedure:

- Fit toy data, once conditionally with a fixed μ and once with μ floating.
- Systematics are incorporated into Likelihood, constraints randomized in the fits (nuisance parameters).
- ► Ratio of Likelihoods is the Profile Likelihood, we use the test statistic q_µ = -2 ln L(µ, Â) L(µ, Â)
- Throw toys from model fit to data to generate the distribution of under signal+background and background only hypotheses
- Exclude at 95% confidence when ratio of p-values CL_s = CL_{s+b}/CL_b is 0.05.

・ロト ・回ト ・ヨト ・ヨト