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νμ disappearance

We know from several experiments, e.g. MINOS, T2K that some νμ change in 
such a way that they are no longer detected after travelling a few hundred 
kilometres - this is known as νμ disappearance. 

There are good theoretical reasons to suppose that this is due to νμ → ντ 
oscillations, though this has not yet been confirmed experimentally. 

Neutrino experiments have mainly calculated the νμ-survival probability assuming 
that there are only two neutrino flavours (νμ and ντ):

P(νμ→νμ) = 1 - sin2(2θ23) sin2(1.267 Δm322 L / E)

2



T2K 2-flavour 
νμ-disappearance results

T2K carried out two analyses to find the best-
fit values of sin2(2θ23) and |Δm322|. One analysis 
used a binned likelihood-ratio method and 
minimised equation 1.
The alternate analysis used an unbinned 
maximum-likelihood method in which the 
likelihood was equation 2. 
We expected 104 ± 14 single μ-like ring events 
in Super Kamiokande for the no-disappearance 
hypothesis, but observed 31 events. The best-fit 
values for 2-flavour νμ→ντ oscillations are

sin2(2θ23) = 0.98
|Δm322| = 2.65 x 10-3 eV2. 

In both analyses, the 90% confidence regions are 
found using the Feldman-Cousins unified 
method. 
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TABLE II. Systematic uncertainties on the predicted number

of SK selected events without oscillations and for oscillations

with sin
2
(2θ23) = 1.0 and |∆m2

32| = 2.4 × 10
−3

eV
2
.

Source δNexp
SK /Nexp

SK δNexp
SK /Nexp

SK

(%, no osc) (%, with osc)

SK CCQE efficiency ±3.4 ±3.4

SK CC non-QE efficiency ±3.3 ±6.5

SK NC efficiency ±2.0 ±7.2

ND280 efficiency +5.5 -5.3 +5.5 -5.3

ND280 event rate ±2.6 ±2.6

Flux normalization (SK/ND280) ±7.3 ±4.8

CCQE cross section ±4.1 ±2.5

CC1π/CCQE cross section +2.2 -1.9 +0.4 -0.5

Other CC/CCQE cross section +5.3 -4.7 +4.1 -3.6

NC/CCQE cross section ±0.8 ±0.9

Final-state interactions ±3.2 ±5.9

Total +13.3 -13.0 +15.0 -14.8
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is minimized. The sum in Eq. 5 is over 50 MeV bins of

reconstructed energy of selected events in the far detector

from 0-10 GeV.

Using the near-detector measurement and setting

Psurv = 1.0 in Eq. 4, we expect a total of 103.6
+13.8
−13.4

(syst) single µ-like ring events in the far detector with-

out disappearance, but we observe 31 events. If νµ → ντ
oscillations are assumed, the best-fit point determined

using Eq. 5 is sin
2
(2θ23) = 0.98 and |∆m2

32| = 2.65 ×
10

−3
eV

2
. We estimate the systematic uncertainty in

the best-fit value of sin
2
(2θ23) to be ±4.7% and that in

|∆m2
32| to be ±4.5%. The reconstructed energy spectrum

of the 31 data events is shown in Fig. 3 along with the

expected far-detector spectra without disappearance and

with best-fit oscillations.

We construct confidence regions
1
in the oscillation pa-

rameters using the method of Feldman and Cousins [28].

Statistical variations are taken into account by Poisson

fluctuations of toy MC datasets, and systematic uncer-

tainties are incorporated using the method of Cousins

and Highland [29, 30]. The 90% confidence region for

sin
2
(2θ23) and |∆m2

32| is shown in Fig. 4 for combined

statistical and systematic uncertainties.

1 In the T2K narrow-band beam, for a low-statistics data set,
there is a possible degeneracy between the first oscillation maxi-
mum and other oscillation maxima in L/E. Therefore we decided
in advance to report confidence regions both with and without
an explicit bound at |∆m2

32| < 5 × 10−3eV2. For this data set,
the bounded and unbounded confidence regions are identical.
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FIG. 3. Reconstructed energy spectrum of the 31 data events

compared with the expected spectra in the far detector with-

out disappearance and with best-fit νµ → ντ oscillations. A

variable binning scheme is used here for the purpose of il-

lustration only; the actual analysis used equal-sized 50 MeV

bins.
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FIG. 4. The 90% confidence regions for sin
2
(2θ23) and

|∆m2
32|; results from the two analyses reported here are com-

pared with those from MINOS [5] and Super-Kamiokande

[6, 31].

We also carried out an alternate analysis with a max-

imum likelihood method. The likelihood is defined as:

L = Lnorm(sin
2
(2θ23),∆m2

32, f)

L
shape

(sin
2
(2θ23),∆m2

32, f)Lsyst(f), (6)

where the first term is the Poisson probability for the ob-

served number of events, and the second term is the un-

binned likelihood for the reconstructed neutrino energy

spectrum. The vector f represents parameters related to

systematic uncertainties that have been allowed to vary

in the fit to maximize the likelihood, and the last term

in Eq. 6 is a multidimensional Gaussian probability for

the systematic error parameters. The result is consistent

with the analysis described earlier. The best-fit point for

this alternate analysis is sin
2
(2θ23) = 0.99 and |∆m2

32|
= 2.63 × 10

−3
eV

2
. The 90% confidence region for the

neutrino oscillation parameters is shown in Fig. 4.

In conclusion, we have reported the first observation
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νμ disappearance

2.7 Neutrino Flavour Change and Mass 13

high-resolution emulsion. Four such events were observed.

2.7 Neutrino Flavour Change and Mass

By 1957 the mass of the neutrino had not been measured to differ from zero, and

many thought it was identically zero [60]. However, Bruno Pontecorvo considered

the potential for neutrino flavour change allowed by a non-zero mass [61]: at this

point ν ! ν oscillations by analogy with the kaon system, assuming no conser-

vation of lepton number in the (then one-flavour) neutrino sector. In 1967 [62],

following the discovery of the νµ, he considered a number of different neutrino

flavour change models including possible νe ! νµ oscillations. Meanwhile, in

1964, Ziro Maki, Masami Nakagawa and Shoichi Sakata discussed the two-flavour

neutrino oscillation model in the form we know it today (albeit in an attempt to

explain the structure of hadronic particles alternate to the quark model) [63].

2.7.1 Neutrino Oscillations

The formulism of neutrino oscillations put forward by Pontecorvo, Maki, Naka-

gawa and Sakata (PMNS) was for a two flavour scenario. Here, it is extended to

encompass three flavours, using the notation of [58].

Neutrinos experience the weak interactions in eigenstates of lepton flavour:

|νe〉, |νµ〉 and |ντ 〉. They propagate through vacuum in their mass eigenstates |ν1〉,

|ν2〉 and |ν3〉. These states are not equivalent, but are related by a rotation









νe

νµ

ντ









= U∗









ν1

ν2

ν3









. (2.1)

U is called the PMNS rotation matrix, satisfying U †U = 1. The unitarity con-

2.7 Neutrino Flavour Change and Mass 13

high-resolution emulsion. Four such events were observed.

2.7 Neutrino Flavour Change and Mass

By 1957 the mass of the neutrino had not been measured to differ from zero, and

many thought it was identically zero [60]. However, Bruno Pontecorvo considered

the potential for neutrino flavour change allowed by a non-zero mass [61]: at this

point ν ! ν oscillations by analogy with the kaon system, assuming no conser-

vation of lepton number in the (then one-flavour) neutrino sector. In 1967 [62],

following the discovery of the νµ, he considered a number of different neutrino

flavour change models including possible νe ! νµ oscillations. Meanwhile, in

1964, Ziro Maki, Masami Nakagawa and Shoichi Sakata discussed the two-flavour

neutrino oscillation model in the form we know it today (albeit in an attempt to

explain the structure of hadronic particles alternate to the quark model) [63].

2.7.1 Neutrino Oscillations

The formulism of neutrino oscillations put forward by Pontecorvo, Maki, Naka-

gawa and Sakata (PMNS) was for a two flavour scenario. Here, it is extended to

encompass three flavours, using the notation of [58].

Neutrinos experience the weak interactions in eigenstates of lepton flavour:

|νe〉, |νµ〉 and |ντ 〉. They propagate through vacuum in their mass eigenstates |ν1〉,

|ν2〉 and |ν3〉. These states are not equivalent, but are related by a rotation









νe

νµ

ντ









= U∗









ν1

ν2

ν3









. (2.1)

U is called the PMNS rotation matrix, satisfying U †U = 1. The unitarity con-

2.7 Neutrino Flavour Change and Mass 14

straint removes nine free parameters, and five of the remaining are relative phases

between the six lepton fields which can be absorbed by those fields. This leaves

four free parameters in U . The standard parameterisation is in terms of three

mixing angles θ12, θ23 and θ13 and a phase δ:

U =









Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









=









1 0 0

0 c23 s23

0 −s23 c23

















c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

















c12 s12 0

−s12 c12 0

0 0 1









=









c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13









(2.2)

where sij = sin θij and cij = cos θij .

Any source (the Sun, a reactor, an accelerator, etc.) produces a neutrino at a

time t = 0 in a weak eigenstate |να(t = 0)〉. This is a sum of mass eigenstates |νi〉:

|να(0)〉 =
∑

i

U∗
αi |νi〉 .

(At this point the treatment is general for any number of neutrino flavours.)

As the neutrino propagates, its mass eigenstates evolve:

|να(t)〉 =
∑

i

U∗
αie

ipi·x |νi〉

where x is the four-position of the neutrino and pi the four-momentum of the mass

state i.

At a time t the neutrino is observed through its weak interaction in a detector.
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U is known as the PMNS matrix, and it relates neutrino mass eigenstates to 
flavour eigenstates:

=
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=where

However this 2-flavour analysis is only an approximation to the exact νμ-
survival probability (in vacuum) if all three flavours are considered:

2.7 Neutrino Flavour Change and Mass 18

argument then becomes
1.27∆m2

ijL

E
;

and the argument of the first sinusoidal term in equation 2.3 is a factor of two

larger.

The transition probability relevant to MINOS is

P (νµ → νµ) = 1 − 4
∑

i(>j)

∑

j

|Uµi|2|Uµj |2 sin2

(
1.27∆m2

ijL

E

)

.

where the Im term in equation 2.3 goes to zero when α = β. As shall be seen later

in this chapter, experiment has found sin θ13 to be small. Approximating sin θ13 =

0 and cos θ13 = 1, the relevant PMNS matrix components from equation 2.2 are

Uµ1 = s12c23 − c12s23s13e
iδ ⇒ |Uµ1|2 ≈ s2

12c
2
23

Uµ2 = c12c23 − s12s23s13e
iδ ⇒ |Uµ2|2 ≈ c2

12c
2
23

Uµ3 = s23c13 ⇒ |Uµ3|2 ≈ s2
23.

Experiment has shown ∆m21 = O(7 × 10−5 eV2). Thus for MINOS,

sin2

(
1.27∆m2

21L

E

)

≈ sin2

(
1.27 × 7 × 10−5 × 735

3

)

≈ sin2(0.02) ≈ 0.

Similarly, ∆m2
31 = O(3 × 10−3 eV2(& ∆m2

21)) and ∆m2
31 − ∆m2

21 = ∆m2
32, so

∆m2
31 ≈ ∆m2

32 = ∆m2
atm. Therefore,

P (νµ → νµ) ≈ 1 − 4s2
23c

2
23(s

2
12 + c2

12) sin2

(
1.27∆m2

atmL

E

)

.

Using 2 sin θ23 cos θ23 = sin 2θ23 and sin2 θ12 + cos2 θ12 = 1 gives the well known
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2-flavour approximation in 
νμ disappearance

André de Gouvêa Northwestern
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The 2-flavour νμ-survival probability is 
obtained by making two approximations: 

1. θ13 = 0 ⇒  s13 = 0, c13 = 1

2. |Δm31|2 = |Δm32|2, i.e. neglect Δm122 which 
is ≈30 times smaller.

However in June 2011 T2K published 
indications for a non-zero θ13, and in March 
2012 Daya Bay found θ13 = 0.092 ± 0.017 
with a non-zero θ13 at 5.2σ significance. 

Also the error in the 2011 MINOS 
measurement of |Δm322|
≈ 4x10-4 eV2 (compared with Δm122 = 
0.8x10-4 eV2), and T2K expects to reduce this 
error within 1 year.   
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Matter effects

This means that the 2-flavour approximation is no longer valid, and we must 
use the 3-flavour formulation. 

If we are to be more precise, we must also consider the effects on oscillations 
of interactions between neutrinos and the matter through which they travel 
between the near and far detectors. 

All three neutrino flavours undergo neutral-current (NC) interactions with 
protons, neutrons and electrons in matter. These NC interactions have 
identical amplitudes for all three flavours, and they produce no observable 
effects on oscillation probabilities. 

However the probabilities of oscillation between one neutrino flavour and 
another are changed by coherent forward scattering of νe in charged-current 
interactions with electrons in matter. 

6



Calculation of 3-flavour 
oscillation probabilities

The calculation of 3-flavour oscillation probabilities in matter starts with UMU✝ 

where E is energy, GF the Fermi coupling constant and Ne the number 
density of electrons in matter. For antineutrinos V is subtracted. 

The resulting matrix is diagonalised. The eigenvalues are calculated by solving 
the (cubic) characteristic equation using Cardano’s method (arXiv:physics/
0610206). The differences between them are the effective Δm2 in matter. 

3-Flavour Neutrino Oscillations

1 3-flavour neutrino oscillations

1.1 Assumptions

The 3-flavour oscillation probabilities are subject to the following assumptions:

1. T2K neutrinos are highly relativistic, i.e. travel at very nearly the velocity of light. This allows the
flight time to be converted to the distance between the two detectors.

2. The mass of a T2K neutrino is very much smaller than its momentum. This allows
(

mν

pν

)2

and higher

order terms to be disregarded compared with
(

mν

pν

)

.

3. CPT is conserved. A practical consequence of this assumption is that survival probabilities are the
same for neutrinos and antineutrinos; for example, P(νµ → νµ) is identical to P(ν̄µ → ν̄µ).

1.2 3-flavour neutrino oscillations in vacuum

The 3-flavour neutrino oscillation probabilities in vacuum are calculated from equation 11 in [1]. A compar-
ison of 2- and 3-flavour νµ survival probabilities in vacuum is given in figure 1, and the effect of δCP on the
3-flavour νµ survival probability in vacuum is shown in figure 2. A similar comparison for P(νµ → νe) in
vacuum is given in figure 3, and the effect of δCP on P(νµ → νe) in vacuum is given in figure 4. The effects
of uncertainties in sin2(2θ12) and ∆m2

12 on the 3-flavour P(νµ → νµ) in vacuum are shown in table 1.

1.3 3-flavour neutrino oscillations in constant density matter

All three neutrino flavours undergo neutral-current interactions with protons, neutrons and electrons in
matter. These neutral-current interactions have identical amplitudes for all three flavours, and they produce
no observable effects on oscillation probabilities. However the probabilities of oscillation between one neutrino
flavour and another are changed by coherent forward scattering of electron neutrinos in charged-current
interactions with electrons in matter [1].

The calculation of the 3-flavour oscillation probabilities in constant density matter begins with the cal-
culation of the matrix

M = U





0 0 0
0 ∆m2

12 0
0 0 ∆m2

13



U † (1)

where U is the PMNS matrix in vacuum:

U =





c12c13 c13s12 s13e
−iδ

−c23s12 − s13s23c12e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − s13c12c23e
iδ −s23c12 − s12c23s13e

iδ c13c23



 (2)

and s12 = sin(θ12), c12 = cos(θ12), etc. M is used for neutrinos, but its complex conjugate is used for
antineutrinos. For neutrinos, the effects of the charged-current interactions between electron neutrinos and
electrons can be taken into account by adding the potential 2E

√
2GF Ne to the real part of the first diagonal

element of M, where E is the neutrino energy, GF is the Fermi coupling constant, and Ne is the number

1

where M =
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Efficient numerical diagonalization of hermitian 3 × 3 matrices

Joachim Koppa

Max–Planck–Institut für Kernphysik,
Postfach 10 39 80, 69029 Heidelberg, Germany

A very common problem in science is the numerical diagonalization of symmetric or hermitian 3×3
matrices. Since standard “black box” packages may be too inefficient if the number of matrices is
large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and
Cuppen algorithms and compare them with an analytical method relying on Cardano’s formula for
the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but
also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical
algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even
fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by
using a hybrid method, which falls back to QL if conditions are such that the analytical calculation
might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical
ideas, and present detailed benchmark results. C and Fortran implementations of our code are
available for download from http://www.mpi-hd.mpg.de/∼globes/3x3/.

1. INTRODUCTION

In many scientific problems, the numerical diagonaliza-
tion of a large number of symmetric or hermitian 3 × 3
matrices plays a central role. For a matrix A, this means
calculating a set of eigenvalues λi and eigenvectors vi,
satisfying

Avi = λivi. (1)

An example from classical mechanics or molecular sci-
ence is the determination of the principal axes of a solid
object [1]. The author’s interest in the problem arises
from the numerical computation of neutrino oscillation
probabilities in matter [2–4], which requires the diago-
nalization of the Hamiltonian operator

H = U





0
∆m2

21

∆m2
31



U† +





V
0

0



 . (2)

Here, U is the leptonic mixing matrix, ∆m2
21 and ∆m2

31

are the differences of the squared neutrino masses, and V
is the MSW (Mikheyev-Smirnov-Wolfenstein) Potential
describing coherent forward scattering in matter. If cer-
tain non-standard physics contributions are considered,
the MSW matrix can also contain more than one non-
zero entry [5].

There exist many publicly available software pack-
ages for the calculation of matrix eigensystems, e.g. LA-
PACK [6], the GNU Scientific Library [7], or the Nu-
merical Recipes algorithms [8]. These packages exhibit
excellent accuracy, but being designed mainly for very
large matrices, they may produce a lot of computational
overhead in the simple 3 × 3 case. This overhead comes

aEmail: jkopp@mpi-hd.mpg.de

partly from the algorithms themselves, and partly from
the implementational details.

In this letter, we will study the performance of several
algorithms which were optimized specifically for 3 × 3
matrices. We will discuss the well-known Jacobi, QL
and Cuppen algorithms, and compare their speed and
accuracy to that of a direct analytical calculation using
Cardano’s formula for the eigenvalues, and vector cross
products for the eigenvectors. The application of Car-
dano’s formula to the 3 × 3 eigenproblem has been sug-
gested previously in [9], and formulas for the eigenvectors
based on the computation of the Euler angles have been
presented in [10],

The outline of the paper is as follows: In Secs. 2
and 3, we will describe the mathematical background
of the considered algorithms as well as the most im-
portant implementational issues, and discuss their nu-
merical properties. In Sec. 4, we will briefly mention
some other algorithms capable of solving the 3× 3 eigen-
problem, and give reasons why we do not consider them
to be the optimal choice for such small matrices. Our
purely theoretical discussion will be complemented in
Sec. 5 by the presentation of detailed benchmark re-
sults. Finally, we will draw our conclusions in Sec. 6.
The appendix contains two alternative derivations of
Cardano’s formulas, and the documentation of our C
and Fortran code, which is available for download from
http://www.mpi-hd.mpg.de/∼globes/3x3/.

2. ITERATIVE ALGORITHMS

2.1. The Jacobi method

One of the oldest methods for the diagonalization of an
arbitrary symmetric or hermitian n × n matrix A is the
Jacobi algorithm. Discussions of this algorithm can be
found in [8, 11–14]. Its basic idea is to iteratively zero the
off-diagonal elements of A by unitary transformations of

For neutrinos, matter effects are taken into account by adding the potential 
V = 2E√2GFNe to UMU✝ :
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The eigenvectors are calculated algebraically. Set one component equal to 1.0 
(real) and calculate the other two components using two of the equations 
UMU✝ - λI = 0. Normalise the eigenvectors and they become the columns of the 
effective mixing matrix in matter (UMatter). Then carry out the following steps:

1. Define a complex column vector          to represent a νμ flavour eigenstate. 

2. Multiply by UMatter✝ to convert to mass eigenstates.

3. Propagate to Super Kamiokande by multiplying the jth component by 
exp(-i Δm1j2 L / E).

4. Convert back to flavour eigenstates by multiplying by UMatter.

5. The probabilities of each neutrino flavour are given by the moduli squared of 
the components of the resulting 1x3 complex vector.

Table 1: Effects of uncertainties in sin2(2θ12) and ∆m2
12 on the 3-flavour P(νµ → νµ) in vacuum; this is for

the normal mass hierarchy, sin2(2θ23) = 1.0, ∆m2
23 = 2.32 × 10−3 eV2, sin2(2θ13) = 0.1 and δCP = 0

Energy P(νµ → νµ) P(νµ → νµ) P(νµ → νµ) P(νµ → νµ) P(νµ → νµ)
(GeV) for sin2(2θ12) for sin2(2θ12) for sin2(2θ12) for sin2(2θ12) for sin2(2θ12)

= 0.862, = 0.887, = 0.840, = 0.862, = 0.862,
∆m2

12 = ∆m2
12 = ∆m2

12 = ∆m2
12 = ∆m2

12 =
7.6 ×10−5 eV2) 7.6 ×10−5 eV2 7.6 ×10−5 eV2 7.8 ×10−5 eV2 7.4 ×10−5 eV2

0.3 0.95474 0.95758 0.95418 0.95718 0.95451
0.4 0.34836 0.35144 0.34810 0.35098 0.34836
0.5 0.036690 0.037685 0.036619 0.037545 0.03669
0.6 0.011059 0.010844 0.011087 0.010902 0.011059
0.7 0.094821 0.094081 0.09489 0.094228 0.094821
0.8 0.20508 0.20416 0.20516 0.20434 0.20508
0.9 0.31155 0.31061 0.31163 0.31079 0.31155
1.0 0.40516 0.40427 0.40524 0.40444 0.40516
1.1 0.48463 0.48380 0.48470 0.48396 0.48463
1.2 0.55125 0.55050 0.55131 0.55064 0.55125
1.3 0.60696 0.60628 0.60701 0.60641 0.60696
1.4 0.65365 0.65304 0.65371 0.65316 0.65365
1.5 0.69298 0.69243 0.69302 0.69253 0.69298
1.6 0.72628 0.72579 0.72633 0.72588 0.72628
1.7 0.75467 0.75421 0.75470 0.75430 0.75467
1.8 0.77900 0.77859 0.77904 0.77867 0.77900
1.9 0.80000 0.79962 0.80003 0.79970 0.80000
2.0 0.81821 0.81787 0.81824 0.81794 0.81821

density of electrons in matter. For antineutrinos, this potential is subtracted from the real part of the
first diagonal element of the complex conjugate of M. After the addition or subtraction of this potential,
M (or its complex conjugate) is diagonalised. The eigenvalues of a Hermitian matrix are always real; they
are calculated by solving the (cubic) characteristic equation using the method of del Ferro, Tartaglia and
Cardano as described in [2]. The differences between the eigenvalues are the effective mass-squared differences
in matter. The eigenvectors are calculated using an algebraic method, and they become the columns of the
effective mixing matrix in matter.

The initial flavour state of the neutrino is represented by a 1×3 column vector; if, for example, the initial
flavour state is a muon neutrino, this column vector is





0
1
0





The entries of this column vector are allowed to be complex, though in practice they are always real. The
initial flavour state is then multiplied by the Hermitian conjugate of the matter mixing matrix to convert it
to another 1×3 complex column vector representing the initial mass states. These mass states are propagated

to SuperK by multiplying the jth initial mass state by exp
(

−i∆m2

1jL

2E

)

, where the ∆m2
1j are the mass-squared

differences in matter, i.e. the differences between the eigenvalues of M. This gives a new 1×3 complex column
vector representing the final mass states, and these are converted to the final flavour states by multiplying by
the matter mixing matrix. The entries of the resulting 1×3 complex column vector represent the amplitudes
of each flavour at SuperK, and the corresponding oscillation probabilities are calculated as the moduli squared
of these amplitudes.

Comparisons of νµ oscillation probabilities in vacuum and matter are given for sin2(2θ13) = 0.01, 0.05
and 0.1 in tables 2, 3 and 4 respectively.

4

Calculation of 3-flavour 
oscillation probabilities
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Comparison of 2- and 3-flavour 
oscillation probabilities

Comparison of 2-flavour and 3-flavour 
oscillation probabilities with matter 
effects for P(νμ→νμ)

Comparison of leading-order and 3-flavour 
oscillation probabilities with matter effects 
for P(νμ→νe)

sin2(2θ12) = 0.862
sin2(2θ13) = 0.1
sin2(2θ23) = 1.0

Earth crust density = 2.7 g/cm3

NH = normal mass hierarchy
IH = inverted mass hierarchy

Δm122 = 7.6x10-5 eV2

|Δm322| = 2.32x10-3 eV2

δCP = 0
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Summary

We have implemented a 3-flavour νμ-disappearance analysis that gives more 
precise measurements of sin2(2θ23) and |Δm322|. 

We are currently working on a 3-flavour joint νμ-disappearance/νe-appearance 
analysis. Since the leading-order term in P(νμ→νe) is 

sin2(θ23) sin2(2θ13) sin2(1.267 Δm312 L / E), 

we will report the measurement of θ23 in the form sin2(θ23) rather than the 
more traditional sin2(2θ23). If θ23 ≠ 45o, this will result in two best-fit points. 
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Validation of 3-flavour oscillation 
probabilities (vacuum)

The 3-flavour probabilities in vacuum were validated by comparing them with an 
alternative formulation in the PDG review:

where 

There was agreement to 14 significant figures between the two alternative 
formulations. 
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Validation of 3-flavour 
oscillation probabilities (matter)

Several validation checks are made of the 3-flavour probabilities in matter as 
they are calculated: 

1. Sum of eigenvalues is compared with trace of UMU✝.

2. (UMU✝ - λI) x eigenvector is compared with zero. 

3. A check is made that the eigenvectors of UMU✝ are orthogonal.

4. A check is made that UMatter✝ is the inverse of UMatter - multiply them 
together and compare the result with an identity matrix. 

The 3-flavour probabilities were also compared with those calculated by an 
independently-written Fortran program. There was good agreement between 
the two programs, and the fractional differences were ≈2x10-6 (thanks to Terry 
Sloan for his help in making these comparisons). 
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Accuracy of 3-flavour oscillation 
probabilities (matter)

The accuracy of the 3-flavour oscillation probabilities was estimated in two 
separate ways:

1. The matter probabilities for zero density were compared with the vacuum 
probabilities. The fractional differences were ≈2-5x10-6.

2. The sum of three probabilities e.g. P(νμ → νe) + P(νμ → νμ) + P(νμ → ντ) was 
compared with 1.0.  Again there was good agreement, and the differences were 
≈2x10-6.

This means that the 3-flavour probabilities should be considered to be accurate 
to 5 significant figures. 
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Comparison of 3-flavour oscillation 
probabilities in vacuum and matter

Table 4: Comparison of νµ oscillation probabilities in vacuum and matter for the normal mass hierarchy,
Earth crust density = 2.7 g/cm3, sin2(2θ12) = 0.862, sin2(2θ23) = 1.0, ∆m2

12 = 7.6 × 10−5 eV2, ∆m2
23 =

2.32 × 10−3 eV2, δCP = 0 and sin2(2θ13) = 0.1
Energy (GeV) P(νµ → νe) P(νµ → νµ) P(νµ → ντ )

Vacuum Matter Vacuum Matter Vacuum Matter
0.3 0.00053673 0.00016523 0.95474 0.95689 0.044722 0.042946
0.4 0.024267 0.029263 0.34914 0.35017 0.62659 0.62057
0.5 0.046292 0.051604 0.036946 0.037281 0.91676 0.91111
0.6 0.051967 0.056260 0.010939 0.011023 0.93710 0.93272
0.7 0.049725 0.052978 0.094524 0.094528 0.85575 0.85249
0.8 0.044815 0.047255 0.20472 0.20470 0.75047 0.74804
0.9 0.039464 0.041309 0.31118 0.31116 0.64936 0.64753
1.0 0.034489 0.035903 0.40481 0.40479 0.56070 0.55930
1.1 0.030127 0.031227 0.48430 0.48429 0.48557 0.48448
1.2 0.026392 0.027261 0.55095 0.55094 0.42266 0.42180
1.3 0.023224 0.023920 0.60668 0.60668 0.37009 0.36940
1.4 0.020539 0.021104 0.65341 0.65341 0.32605 0.32549
1.5 0.018260 0.018723 0.69276 0.69276 0.28899 0.28852
1.6 0.016318 0.016702 0.72608 0.72609 0.25760 0.25721
1.7 0.014654 0.014976 0.75448 0.75449 0.23086 0.23054
1.8 0.013222 0.013494 0.77883 0.77884 0.20794 0.20767
1.9 0.011982 0.012214 0.79984 0.79985 0.18817 0.18794
2.0 0.010903 0.011102 0.81807 0.81808 0.17102 0.17082

1.4 Validation of the 3-flavour oscillation probabilities

The 3-flavour oscillation probabilities in vacuum were checked using an alternative formulation in equations
13.13 and 13.14 in the PDG review [3]. The probabilities calculated from this formulation agreed with those
calculated from equation 11 in [1] to 14 significant figures.

Several checks of the oscillation probabilities in constant density matter are written into the code that
calculates them:

1. The eigenvalues of M are checked by comparing their sum with the trace of the matrix.

2. Each normalised eigenvector is multiplied by the 3 matrices formed by subtracting the each of the
eigenvalues from the real parts of the diagonal elements of M, and a check is made of the differences
between these products and a zero vector.

3. A check is made that the normalised eigenvectors of M are orthogonal by calculating the scalar product
between them (the scalar product of two complex vectors is the product of the first vector with the
complex conjugate of the second vector).

4. A check is also made that the Hermitian conjugate of the mixing matrix in matter is equal to the inverse
of the matrix. This is done by multiplying the mixing matrix in matter by its Hermitian conjugate,
and checking the differences between the product and an identity matrix.

The values of the oscillation probabilities in constant density matter were checked by comparing them with
equivalent probabilities calculated by an independently-written Fortran program [4]. This Fortran program
uses different algorithms, and calculates numerically the eigenvalues and eigenvectors of M. Nevertheless there
was very good agreement between the two calculations of the probabilities, with the fractional differences
being ≈ 2 × 10−6.
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Δm122 = 7.6x10-5 eV2
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δCP = 0

Normal mass hierarchy

Earth crust density 
= 2.7 g/cm2
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