3-flavour neutrino oscillations

Nick Grant

for the Rutherford/Oxford/Lancs/Imperial/Valencia group
Costas Andreopoulos,Tom Dealtry, Jim Dobson, Lorena Escudero,
Nick Grant, Martin Haigh, Jelena Ilic, Geoff Pearce, Alfons Weber

Institute of Physics HEPP/APP Meeting
3rd April 2012
ν_{μ} disappearance

We know from several experiments, e.g. MINOS,T2K that some ν_{μ} change in such a way that they are no longer detected after travelling a few hundred kilometres - this is known as v_{μ} disappearance.

There are good theoretical reasons to suppose that this is due to $\mathrm{V}_{\mu} \rightarrow \mathrm{V}_{\top}$ oscillations, though this has not yet been confirmed experimentally.

Neutrino experiments have mainly calculated the ν_{μ}-survival probability assuming that there are only two neutrino flavours (V_{μ} and V_{T}):
$P\left(V_{\mu} \rightarrow V_{\mu}\right)=I-\sin ^{2}\left(2 \theta_{23}\right) \sin ^{2}\left(1.267 \Delta m_{32}{ }^{2} L / E\right)$

T2K 2-flavour

V_{μ}-disappearance results

T2K carried out two analyses to find the bestfit values of $\sin ^{2}\left(2 \theta_{23}\right)$ and $\left|\Delta m_{32}{ }^{2}\right|$. One analysis used a binned likelihood-ratio method and minimised equation I.
The alternate analysis used an unbinned maximum-likelihood method in which the likelihood was equation 2.
We expected 104 ± 14 single μ-like ring events in Super Kamiokande for the no-disappearance hypothesis, but observed 3I events. The best-fit values for 2 -flavour $V_{\mu} \rightarrow V_{T}$ oscillations are
$\sin ^{2}\left(2 \theta_{23}\right)=0.98$
$\mid \Delta \mathrm{m}_{32^{2}}{ }^{2}=2.65 \times 10^{-3} \mathrm{eV}^{2}$.
In both analyses, the 90% confidence regions are found using the Feldman-Cousins unified method.

V_{μ} disappearance

However this 2-flavour analysis is only an approximation to the exact $\nu_{\mu-}-$ survival probability (in vacuum) if all three flavours are considered:
$P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=1-4 \sum_{i(>j)} \sum_{j}\left|U_{\mu i}\right|^{2}\left|U_{\mu j}\right|^{2} \sin ^{2}\left(\frac{1.27 \Delta m_{i j}^{2} L}{E}\right)$
U is known as the PMNS matrix, and it relates neutrino mass eigenstates to flavour eigenstates:

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \quad\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

where $\left(\begin{array}{ccc}U_{e 1} & U_{e 2} & U_{e 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\end{array}\right)=\left(\begin{array}{ccc}c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-\mathrm{i} \delta} \\ -s_{12} c_{23}-c_{12} s_{23} s_{13} e^{\mathrm{i} \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{\mathrm{i} \delta} & s_{23} c_{13} \\ s_{12} s_{23}-c_{12} c_{23} s_{13} e^{\mathrm{i} \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{\mathrm{i} \delta} & c_{23} c_{13}\end{array}\right)$

2-flavour approximation in V_{μ} disappearance

The 2-flavour v_{μ}-survival probability is obtained by making two approximations:

1. $\theta_{13}=0 \Rightarrow s_{13}=0, c_{13}=1$
2. $\left|\Delta m_{31}\right|^{2}=\left|\Delta m_{32}\right|^{2}$, i.e. neglect $\Delta m_{12}{ }^{2}$ which is ≈ 30 times smaller.

However in June 201 I T2K published indications for a non-zero θ_{13}, and in March 2012 Daya Bay found $\theta_{13}=0.092 \pm 0.017$ with a non-zero θ_{13} at 5.2σ significance.

Also the error in the 201I MINOS measurement of $\left|\Delta m_{32}{ }^{2}\right|$ $\approx 4 \times 10^{-4} \mathrm{eV}^{2}$ (compared with $\Delta \mathrm{m}_{12^{2}}=$ $0.8 \times 10^{-4} \mathrm{eV}^{2}$), and T2K expects to reduce this error within I year.

Matter effects

This means that the 2 -flavour approximation is no longer valid, and we must use the 3 -flavour formulation.

If we are to be more precise, we must also consider the effects on oscillations of interactions between neutrinos and the matter through which they travel between the near and far detectors.

All three neutrino flavours undergo neutral-current (NC) interactions with protons, neutrons and electrons in matter. These NC interactions have identical amplitudes for all three flavours, and they produce no observable effects on oscillation probabilities.

However the probabilities of oscillation between one neutrino flavour and another are changed by coherent forward scattering of V_{e} in charged-current interactions with electrons in matter.

Calculation of 3-flavour oscillation probabilities

The calculation of 3-flavour oscillation probabilities in matter starts with UMU^{+}
where $\mathbf{M}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \Delta m_{12}^{2} & 0 \\ 0 & 0 & \Delta m_{13}^{2}\end{array}\right)$
For neutrinos, matter effects are taken into account by adding the potential $V=2 E \sqrt{ } 2 G_{F} N_{e}$ to UMU $^{+}$:
$\mathbf{U}\left(\begin{array}{lll}0 & & \\ & \Delta m_{21}^{2} & \\ & & \Delta m_{31}^{2}\end{array}\right) \mathbf{U}^{\dagger}+\left(\begin{array}{cc}V & \\ & 0 \\ & \\ & \\ & \end{array}\right)$
where E is energy, G_{F} the Fermi coupling constant and N_{e} the number density of electrons in matter. For antineutrinos V is subtracted.

The resulting matrix is diagonalised. The eigenvalues are calculated by solving the (cubic) characteristic equation using Cardano's method (arXiv:physics/ 0610206). The differences between them are the effective $\Delta \mathrm{m}^{2}$ in matter.

Calculation of 3-flavour oscillation probabilities

The eigenvectors are calculated algebraically. Set one component equal to 1.0 (real) and calculate the other two components using two of the equations UMU $+\lambda I=0$. Normalise the eigenvectors and they become the columns of the effective mixing matrix in matter (UMatter). Then carry out the following steps:
I. Define a complex column vector $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ to represent a V_{μ} flavour eigenstate.
2. Multiply by UMattert to convert to mass eigenstates.
3. Propagate to Super Kamiokande by multiplying the jth component by $\exp \left(-i \Delta m_{1 j}{ }^{2} L / E\right)$.
4. Convert back to flavour eigenstates by multiplying by UMatter.
5.The probabilities of each neutrino flavour are given by the moduli squared of the components of the resulting 1×3 complex vector.

Comparison of 2- and 3-flavour oscillation probabilities

Comparison of 2-flavour and 3-flavour oscillation probabilities with matter effects for $\mathrm{P}\left(\mathrm{V}_{\mu} \rightarrow \mathrm{V}_{\mu}\right)$

Comparison of leading-order and 3-flavour oscillation probabilities with matter effects for $P\left(V_{\mu} \rightarrow V_{e}\right)$

$$
\begin{aligned}
\sin ^{2}\left(2 \theta_{12}\right) & =0.862 \\
\sin ^{2}\left(2 \theta_{13}\right) & =0.1 \\
\sin ^{2}\left(2 \theta_{23}\right) & =1.0
\end{aligned}
$$

$\Delta m_{12}{ }^{2}=7.6 \times 10^{-5} \mathrm{eV}^{2}$
$\left|\Delta m_{32}{ }^{2}\right|=2.32 \times 10^{-3} \mathrm{eV}^{2}$
$\delta_{C P}=0$
Earth crust density $=2.7 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{NH}=$ normal mass hierarchy
$\mathrm{IH}=$ inverted mass hierarchy

Summary

We have implemented a 3 -flavour ν_{μ}-disappearance analysis that gives more precise measurements of $\sin ^{2}\left(2 \theta_{23}\right)$ and $\left|\Delta m_{32}{ }^{2}\right|$.

We are currently working on a 3 -flavour joint V_{μ}-disappearance $/ V_{e}$-appearance analysis. Since the leading-order term in $\mathrm{P}\left(\mathrm{V}_{\mu} \rightarrow \mathrm{V}_{\mathrm{e}}\right)$ is
$\sin ^{2}\left(\theta_{23}\right) \sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(1.267 \Delta m_{31}{ }^{2} L / E\right)$,
we will report the measurement of θ_{23} in the form $\sin ^{2}\left(\theta_{23}\right)$ rather than the more traditional $\sin ^{2}\left(2 \theta_{23}\right)$. If $\theta_{23} \neq 45^{\circ}$, this will result in two best-fit points.

T2K

BACKUP SLIDES

Validation of 3-flavour oscillation probabilities (vacuum)

The 3-flavour probabilities in vacuum were validated by comparing them with an alternative formulation in the PDG review:
$P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{j}\left|U_{\beta j}\right|^{2}\left|U_{\alpha j}\right|^{2}+2 \sum_{j>k}\left|U_{\beta j} U_{\alpha j}^{*} U_{\alpha k} U_{\beta k}^{*}\right| \cos \left(\frac{\Delta m_{j k}^{2} L}{2 E}-\phi_{\beta \alpha ; j k}\right)$
where $\phi_{\beta \alpha ; j k}=\arg \left(U_{\beta j} U_{\alpha j}^{*} U_{\alpha k} U_{\beta k}^{*}\right)$

There was agreement to 14 significant figures between the two alternative formulations.

Validation of 3-flavour oscillation probabilities (matter)

Several validation checks are made of the 3-flavour probabilities in matter as they are calculated:
I. Sum of eigenvalues is compared with trace of UMU ${ }^{+}$.
2. (UMU+ - $\lambda \mathrm{I}) \times$ eigenvector is compared with zero.
3.A check is made that the eigenvectors of UMU^{+}are orthogonal.
4. A check is made that UMattert is the inverse of UMatter - multiply them together and compare the result with an identity matrix.

The 3-flavour probabilities were also compared with those calculated by an independently-written Fortran program. There was good agreement between the two programs, and the fractional differences were $\approx 2 \times 10^{-6}$ (thanks to Terry Sloan for his help in making these comparisons).

Accuracy of 3-flavour oscillation probabilities (matter)

The accuracy of the 3-flavour oscillation probabilities was estimated in two separate ways:
I.The matter probabilities for zero density were compared with the vacuum probabilities. The fractional differences were $\approx 2-5 \times 10^{-6}$.
2.The sum of three probabilities e.g. $P\left(v_{\mu} \rightarrow v_{e}\right)+P\left(v_{\mu} \rightarrow v_{\mu}\right)+P\left(v_{\mu} \rightarrow v_{T}\right)$ was compared with I.O. Again there was good agreement, and the differences were $\approx 2 \times 10^{-6}$.

This means that the 3-flavour probabilities should be considered to be accurate to 5 significant figures.

Comparison of 3-flavour oscillation probabilities in vacuum and matter

Energy (GeV)	$\mathrm{P}\left(\nu_{\mu} \rightarrow \nu_{e}\right)$		$\mathrm{P}\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)$		$\mathrm{P}\left(\nu_{\mu} \rightarrow \nu_{\tau}\right)$	
	Vacuum	Matter	Vacuum	Matter	Vacuum	Matter
0.3	0.00053673	0.00016523	0.95474	0.95689	0.044722	0.042946
0.4	0.024267	0.029263	0.34914	0.35017	0.62659	0.62057
0.5	0.046292	0.051604	0.036946	0.037281	0.91676	0.91111
0.6	0.051967	0.056260	0.010939	0.011023	0.93710	0.93272
0.7	0.049725	0.052978	0.094524	0.094528	0.85575	0.85249
0.8	0.044815	0.047255	0.20472	0.20470	0.75047	0.74804
0.9	0.039464	0.041309	0.31118	0.31116	0.64936	0.64753
1.0	0.034489	0.035903	0.40481	0.40479	0.56070	0.55930
1.1	0.030127	0.031227	0.48430	0.48429	0.48557	0.48448
1.2	0.026392	0.027261	0.55095	0.55094	0.42266	0.42180
1.3	0.023224	0.023920	0.60668	0.60668	0.37009	0.36940
1.4	0.020539	0.021104	0.65341	0.65341	0.32605	0.32549
1.5	0.018260	0.018723	0.69276	0.69276	0.28899	0.28852
1.6	0.016318	0.016702	0.72608	0.72609	0.25760	0.25721
1.7	0.014654	0.014976	0.75448	0.75449	0.23086	0.23054
1.8	0.013222	0.013494	0.77883	0.77884	0.20794	0.20767
1.9	0.011982	0.012214	0.79984	0.79985	0.18817	0.18794
2.0	0.010903	0.011102	0.81807	0.81808	0.17102	0.17082

$\sin ^{2}\left(2 \theta_{12}\right)=0.862$
$\Delta m_{12}{ }^{2}=7.6 \times 10^{-5} \mathrm{eV}^{2}$
$\sin ^{2}\left(2 \theta_{23}\right)=1.0$
$\left|\Delta \mathrm{m}_{32}{ }^{2}\right|=2.32 \times 10^{-3} \mathrm{eV}^{2}$
$\sin ^{2}\left(2 \theta_{13}\right)=0.1$
$\delta_{C P}=0$
Normal mass hierarchy
Earth crust density
$=2.7 \mathrm{~g} / \mathrm{cm}^{2}$

