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Outline

= Current knowledge of the neutrino interaction cross-
section on lead

= A brief look at the Tokai to Kamioka (T2K) experiment

= Selecting neutrino interactions in the electromagnetic
calorimeters (ECals) of the ND280 detector

* Initial results

= Current work and future plans
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Neutrino Cross Sections

G.P. Zeller, Proceedings of the Venice 2006: Nulnt02
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= One measurement on lead from CHORUS experiment at 27 GeV
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The T2K experiment

Super-Kamiokande

Mt.Noguchi-Goro Dake

Near Detector

Mt.lkenoyama
1,360m

ga level—
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LA WA

Neutrino Beam

295km

)
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= Long baseline (295km) neutrino oscillation experiment

= Designed to be world's most intense neutrino beam, on the east coast of
Japan in Tokai

= Characterised by the near detector suite at 280m, then observed at Super-
Kamiokande in Kamioka
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The T2K experiment

= First off-axis neutrino beam experiment
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The ND280 detector

= Characterises the neutrino beam, using the
UA1 Magnet Yoke fine grained detectors as primary targets

= TPCs - momentum measurements
and PID

= EM calorimeters - hermiticity and
POD Downstream

: gt:;ector) ‘_——_/I ECAL additional PID
‘ //_/-—-

Solenoid Coil

= Beam axis passes
below and to one side
Barrel ECAL Of the ND280

04/02/12 Mark Scott, Imperial College 6



Imperial College
London _ TZ/iZ\
The Electromagnetic
Calorimeters
= The electromagnetic calorimeters — e

(ECals) surround the tracker of the
ND280

=  Formed from layers of plastic
scintillator bars, interleaved with

lead

= Used for PID and to measure
energy of photon showers

= Total ECal mass is approx. 22
times the total FGD mass
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= Selecting clusters in the ECal that pass a pre-
selection, shown on the right.

= (Calculate the charge weighted start and
end positions of the cluster

= Require one 1s inside the ECal fiducial
volume (white area)

¢
m A

= Selects particles that are created inside or stop 2
inside an ECal

= A cuts based and a likelihood based analysis
were performed

= Both gave compatible results with a twofold
increase 1n efficiency using the likelihood
technique

Outside FV = Blue
Hits = Red
Selected Hits = Green
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~ Likelihood Input variables
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= Red — Background
= Black - Signal

= Charge skew — the skew of
the charge distribution
within an ECal cluster

* Maximum charge — the
maximum hit charge 1n an
ECal cluster
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Neutrino event selection

= Applied the likelihood method from ROOT's multi-variate
analysis (TMVA) package to full beam spill Monte Carlo

TMVA overtraining check for classifier: Likelihood

ITMVA

3 07 'signal (testsample) ' ' ' ' |'." Signal (training sample) ' ' ' |
z [~ Background (test sample) - Background (training sample) —
° 5 .
= — Kolmogorov-Smirnov test: signal (background) probability = 0.624 (0.961) 5 u AChleve
T Cut B reasonable
s .  separation
h :  Dbetween
- 2 background
1O 0
- i (red) and
0~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 > Slgnal (blue)
Likelihood response
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Top | Back | Left side | Bottom Multiple Views

ANMC e
CCQE
event

Evert rurtties - 146 | Parffian - 65536 | Run rumbes - 0] Spil - INVALID | SubRun nurtaer ANVALID | Tims - Man 13300101 09:00:00 JST [Tigger: Not avalatile
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Neutrino event selection

Efficiency / % Purity / %

= Achieve: 190 ek 3

Vertex Distribution XY \

= Expect 75,000 events in
current data set
(7.8 10" protons on
target, 2% of the planned
total data)
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B ccoE interactions anevents = Plots show neutrino

— interaction type before
(left) and after (below)

selection, plotted
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and future plans

Fitter: Kalman Filter = Focusing on
Kalman Filter: lmprOVementS
—  Used for track fitting by most of HEP experiments
- Easy to include random noise processes (ms) and systematic effects (eloss) tO th@ ND28O
- It is a local and incremental fit (dynamic states) .
We can do simultaneously fitting & patter recognition I'GCOHStI' UCthIl

= Applying a

\ \ \ |p“’iajat:ffo_)_P _‘ Kalman filter to
=

. perform track
wprd_| L tes S C” < FCF'miff) fitting in ECals
ﬁ}: tp;,P ' Prjotor i = Examining hits
v (Y W= h(V) W =.'v that pass or do
i .7 notpass the

filter
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Current work

= Kalman filtered hits — plot shows the average charge of hits
not included 1n the track

Average charge of the unmatched hits

= Hits from through- ,.F.
going particles : _L
(red) have a lower
charge than those  o4sf
from tracks ]

starting 1n the -
ECal (black) 0.05-

0.2

0.1F

IR T T R L — B N ST -
0 5 10 15 20 25 30
Average hit charge (MIP equivalents)
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= Working towards a measurement of the absolute charged
current cross-section for muon neutrinos on lead

= Achieving 55% initial purity and 12% efficiency 1s
encouraging and will be improved in the future

= This work 1s being used by current ND280 analyses to
understand ECAL backgrounds to the neutrino beam
characterisation

= Also benefits the collaboration as a cross-check of the
beam flux and could be used to improve the tuning of the
current beam Monte Carlo
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Data-MC Input variables

0.25
vl Track-Shower i 0-05:: Reconstructed EM
...  value — Neural net : energy of ECal

- discriminator o cluster

01— i
o.osf— Jb . 7

0.;_5 — 7T - — th — 1‘5 00:‘ e a0 2000 2500 3000

Track-Shower value EMEnergy_Result (MeV)

Max charge ratio — * Red — Monte Carlo

ratio between the = Black — Data
maximum and

minimum hit charge
in a cluster

= See good agreement

50 60
MaxRatio
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Data-MC Input variables

= Red — Monte Carlo
= Black - Data

* Charge skew — the skew of
o the charge distribution
S N e S S within an ECal cluster

Charge skew

= Maximum charge — the

maximum hit charge 1n an
Maximum charge ECal cluster

8 8 8 § 3
[T T[RRI T T[T T

L, oy e = See some discrepancy here

100 120
QMax (MEU)
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Data-MC Comparison

= Applied the selection to a small amount of data

(~1.5 x 10" POT) and to both NEUT and GENIE

Monte Carlo (~1.5 x 10 POT)

* Took a ratio of Data/MC versus

EM!

“nergyFit_Result and relative off-axis angle

* Also measured the event rate vs POT for data and vs
file number for MC

= Data plot follows, for MC see events selected at a
constant rate
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Selected Data events vs POT

No. of Selected Neutrino Interactions
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NEUT MC

POT
normalised
Data/MC =
0.823 +
0.180

Error
calculated
from spread
of ratio with
relative off-
axis angle

Stat error =
0.003
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= GENIE MC

= POT
normalised
Data/MC =
1.015 +
0.202

* Error
calculated
from spread
of ratio with
relative off-
axis angle

= Stat error =
0.003
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Truth Matching

= Initially performed using the oaUtility methods

= Tested oaUtility truth matching using muon particle
gun MC, with muons generated within each ECal
module

= Truth matching succeeded for 97.3% of trajectories.
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Truth Matching

Additionally, associated a reconstructed cluster to a
truth trajectory if the start of the cluster was within
100mm of the trajectory

| Distance to truth vertex from recon vertex

= Label a cluster as "’?\M
a true neutrino 0 W%WWWM
interaction if its A
start point 1s o
within 100mm of |}
the truth vertex

-t

- +

0 100 200 300 400 500 600 700 800 900 1000
Distance (mm)

« Red — Separation between true vertex and start of reconstructed cluster for correctly
identified vertices

« Black — Separation for all reconstructed clusters and true vertices
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Cut based selection

= Select event 1f 1t passes these cuts:

= AMR < 150 or 270 < AMR

= AMR - The ratio of the major to minor eigenvalues from PCA
result of the cluster — capped at 300

= 14 < Max hit charge

= 8 < Max charge ratio

= The ratio of the maximum hit charge to the minimum hit charge

= Achieve: Eff|C|ency | % Purity / %

51.4

04/02/12 Mark Scott, Imperial College 28



Imperial College T2
London  TMVA Selection

Background rejection versus Signal efficiency

. 2N I %

o =& IR ) between methods

e A
b

= Likeli D
04 LikelihoodPCA V\J
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TR = See no large difference
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il

IMVA
0] 'Signal (test sample] " T """ T "." Signal (training sample) ' "’
Background (test sample) - Background (training sample) -

(1/N) dN/ dx
[$,]

[~ Kolmogorov-Smirnov test: signal (background) probability = 0.624 (0.961)

= See some separation of
signal (blue) and
background (red)

E
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Likelihood response
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An ECal veto

* Find 1388 interactions with a truth vertex in the
FGD scintillator and a cluster 1in the ECal, from
118661 total events with an ECal cluster.

= Imposing MV A selection:

No. of selected FGD vertices

= (.85 cut would remove ~12,000 events with ECal
clusters

= No selection applied to these FGD vertices, don't
know 1f they would pass nue selection
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XZ distribution - MC

Vertex Distribution XZ
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YZ distribution - MC

Vertex Distribution YZ
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