

Neutrino Interactions on Lead at T2K

IoP HEPP and APP conference 3rd April 2012

Outline

- Current knowledge of the neutrino interaction crosssection on lead
- A brief look at the Tokai to Kamioka (T2K) experiment
- Selecting neutrino interactions in the electromagnetic calorimeters (ECals) of the ND280 detector
- Initial results
- Current work and future plans

Neutrino Cross Sections

Charged current quasi-elastic (CCQE)

Charged current single pion $(CC1\pi)$

Deep inelastic scattering (DIS)

One measurement on lead from CHORUS experiment at 27 GeV

The T2K experiment

- Long baseline (295km) neutrino oscillation experiment
- Designed to be world's most intense neutrino beam, on the east coast of Japan in Tokai
- Characterised by the near detector suite at 280m, then observed at Super-Kamiokande in Kamioka

The T2K experiment

First off-axis neutrino beam experiment

 Shifts neutrino beam spectrum, reducing the high energy tail and increases the flux at 600 MeV, the peak oscillation energy.

Imperial College London ___

The ND280 detector

Characterises the neutrino beam, using the fine grained detectors as primary targets

- TPCs momentum measurements and PID
 - EM calorimeters hermiticity and additional PID
 - Beam axis passes below and to one side of the ND280

The Electromagnetic Calorimeters

- The electromagnetic calorimeters (ECals) surround the tracker of the ND280
- Formed from layers of plastic scintillator bars, interleaved with lead
- Used for PID and to measure energy of photon showers
- Total ECal mass is approx. 22 times the total FGD mass

Event selection

- Selecting clusters in the ECal that pass a preselection, shown on the right.
 - Calculate the charge weighted start and end positions of the cluster
 - Require one is inside the ECal fiducial volume (white area)
- Selects particles that are created inside or stop inside an ECal
- A cuts based and a likelihood based analysis were performed
 - Both gave compatible results with a twofold increase in efficiency using the likelihood technique

Outside FV = Blue Hits = Red Selected Hits = Green

Likelihood Input variables

- Red Background
- Black Signal
- See some separation

Likelihood Input variables

- Red Background
- Black Signal
- Charge skew the skew of the charge distribution within an ECal cluster
- Maximum charge the maximum hit charge in an ECal cluster

Neutrino event selection

 Applied the likelihood method from ROOT's multi-variate analysis (TMVA) package to full beam spill Monte Carlo

 Achieve reasonable separation between background (red) and signal (blue)

Neutrino event selection

An MC CCQE event

Neutrino event selection

Achieve:

Efficiency / %	Purity / %
12.0	55.3

- Expect 75,000 events in current data set $(7.8 \times 10^{19} \text{ protons on target, } 2\% \text{ of the planned total data)}$
- 41,000 true charged current muon neutrino events

→ Beam centre

Event selection

Plots show true vertex position before (left) and after (below) selection, plotted against the total charge in the cluster

 Main backgrounds – magnet interactions, events from outside the ECal fiducial volume

Event selection

 Plots show neutrino interaction type before (left) and after (below) selection, plotted against the total charge in the cluster

 Tend to select higher energy CCQE or CC1Pi interactions

Current work and future plans

Fitter: Kalman Filter

Kalman Filter:

- Used for track fitting by most of HEP experiments
- Easy to include random noise processes (ms) and systematic effects (eloss)
- It is a local and incremental fit (dynamic states)
 We can do simultaneously fitting & patter recognition

- Focusing on improvements to the ND280 reconstruction
- Applying a
 Kalman filter to
 perform track
 fitting in ECals
- Examining hits that pass or do not pass the filter

Current work

 Kalman filtered hits – plot shows the average charge of hits not included in the track

 Hits from throughgoing particles (red) have a lower charge than those from tracks starting in the ECal (black)

Summary

- Working towards a measurement of the absolute charged current cross-section for muon neutrinos on lead
- Achieving 55% initial purity and 12% efficiency is encouraging and will be improved in the future
- This work is being used by current ND280 analyses to understand ECAL backgrounds to the neutrino beam characterisation
- Also benefits the collaboration as a cross-check of the beam flux and could be used to improve the tuning of the current beam Monte Carlo

Backup slides

Data-MC Input variables

- Red Monte Carlo
- Black Data

See good agreement

Data-MC Input variables

- Red Monte Carlo
- Black Data
- Charge skew the skew of the charge distribution within an ECal cluster
- Maximum charge the maximum hit charge in an ECal cluster

See some discrepancy here

Data-MC Comparison

- Applied the selection to a small amount of data (~1.5 x 10¹⁸ POT) and to both NEUT and GENIE Monte Carlo (~1.5 x 10¹⁹ POT)
- Took a ratio of Data/MC versus
 EMEnergyFit_Result and relative off-axis angle
- Also measured the event rate vs POT for data and vs file number for MC
- Data plot follows, for MC see events selected at a constant rate

Selected Data events vs POT

Imperial College

London POT normalised Data/MC T2

- **NEUT MC**
- POT normalised Data/MC = $0.823 \pm$ 0.180
- Error calculated from spread of ratio with relative offaxis angle
- Stat error = 0.003

Imperial College London POT normalised Data/MC

- GENIE MC
- POT normalised
 Data/MC =
 1.015 ±
 0.202
- Error
 calculated
 from spread
 of ratio with
 relative off axis angle
- Stat error = 0.003

Truth Matching

- Initially performed using the oaUtility methods
- Tested oaUtility truth matching using muon particle gun MC, with muons generated within each ECal module
- Truth matching succeeded for 97.3% of trajectories.

Truth Matching

- Additionally, associated a reconstructed cluster to a truth trajectory if the start of the cluster was within 100mm of the trajectory
- Label a cluster as a true neutrino interaction if its start point is within 100mm of the truth vertex

- Red Separation between true vertex and start of reconstructed cluster for correctly identified vertices
- Black Separation for all reconstructed clusters and true vertices

Cut based selection

- Select event if it passes these cuts:
 - AMR < 150 or 270 < AMR
 - AMR The ratio of the major to minor eigenvalues from PCA result of the cluster – capped at 300
 - 14 < Max hit charge
 - 8 < Max charge ratio
 - The ratio of the maximum hit charge to the minimum hit charge
 - Achieve:

Efficiency / %	Purity / %
5.7	51.4

TMVA Selection

- See no large difference between methods
- Likelihood easiest to understand
- See some separation of signal (blue) and background (red)

An ECal veto

- Find 1388 interactions with a truth vertex in the FGD scintillator and a cluster in the ECal, from 118661 total events with an ECal cluster.
- Imposing MVA selection:

Cut Value	0.2	0.5	0.85
No. of selected FGD vertices	184	81	21

- 0.85 cut would remove ~12,000 events with ECal clusters
- No selection applied to these FGD vertices, don't know if they would pass nue selection

XZ distribution - MC

YZ distribution - MC

