T. Price

Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry

ECAL Digital ECAL

TPAC Sensor

INMAPS Technology

TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

Digital Calorimetry at Future Linear Colliders

Tony Price

University of Birmingham

txp@hep.ph.bham.ac.uk

April 3, 2012

T. Price

Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

TPAC Senso INMAPS Technology

TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

Overview ILC Overview **3** ILC Detector Requirements 4 Electromagnetic Calorimetry Conventional ECAL Digital ECAL **G** TPAC Sensor **INMAPS** Technology 6 TPAC Testing **Pixel Efficiencies** Noise Studies Shower Multiplicities Radiation Testing Summary

Overview

T. Price

Overview

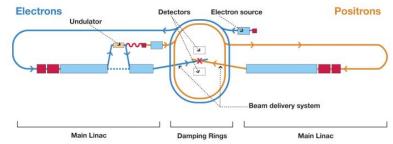
ILC Overview

- ILC Detector Requirements
- Electromagnetic Calorimetry Conventional
- ECAL Digital ECAL

TPAC Sensor

INMAPS Technology

TPAC Testing


Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

• The International Linear Collider (ILC) is a proposed e^+e^- linear collider

II C Overview

- Initial $\sqrt{s} \leq$ 500 GeV rising to 1 TeV after upgrade
- ILC will be largely complementary to LHC physics
- ILC initial state much cleaner so measurements will be much more precise
 - H-boson properties
 - W-boson measured with precision of 7 MeV with threshold scan
 - ttbar threshold scans allowing $\Delta M_t \sim$ 34 MeV

T. Price

Overview

ILC Overview

- ILC Detector Requirements
- Electromagnetic Calorimetry Conventional
- Digital ECAL

TPAC Sensor

INMAPS Technology

TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

ILC Overview

- Final states will include multiple t, Z, W, H leading to 6-8 jet final states
- Benchmark processes
 - $e^+e^- \rightarrow t\bar{t}H$
 - $e^+e^- \rightarrow \nu\nu H$
 - $e^+e^- \rightarrow W^+W^-$
- All have small cross sections compared to $e^+e^-
 ightarrow tar{t}$ so need high luminosity
- Detectors must be optimised for final states with multiple jets

T. Price

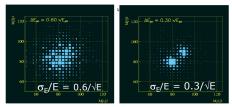
Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

INMAPS Technology


TPAC Testing

Pixel Efficiencie Noise Studies Shower Multiplicities Radiation Testing

Summary

ILC Detector Requirements

- ILC design goal for jets $\frac{\sigma_E}{E} = \frac{0.3}{\sqrt{E[GeV]}}$

- Generally accepted way is Particle Flow
 - Required high granularity (cell size $\sim R_{Moliere}$)
 - Full containment
 - Excellent calorimeter systems
- Use tungsten as showering material

Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry

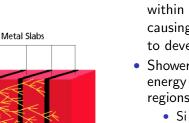
Conventional ECAL Digital ECAL

TPAC Sensor

INMAPS Technology

TPAC Testing

Particle


Path

Shower of Particles

Pixel Efficiencie Noise Studies Shower Multiplicities Radiation Testing

Summary

Electromagnetic Calorimetry The Concept

 Incident particle interacts within the metal slabs causing a particle shower to develop

- Shower particles deposit energy in the sensitive regions
 - Si sensors, scintillators, liquid argon, etc..
- Sum energy deposits and scale to incident particle using scale factor determined in design and commisioning

Overview

ILC Overview

ILC Detector Requirements

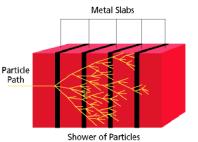
Electromagnetic Calorimetry

Conventional ECAL Digital ECAL

TPAC Sensor

INMAPS Technology

TPAC Testing


Pixel Efficiencie Noise Studies Shower Multiplicities Radiation Testing

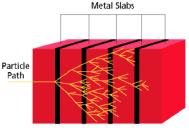
Summary

Electromagnetic Calorimetry

Sources of Uncertainty

- Average number of charged particles in em shower \propto incident energy
 - Statistical fluctuations in the number of shower particles
- Energy deposited in sensitive layer \propto number of particles
 - Fluctuations from incident angle,
 - Particle velocity,
 - Landau energy deposition spread

T Price


Conventional FCAL Digital ECAL

Path

Electromagnetic Calorimetry

Sources of Uncertainty

- Average number of charged particles in em shower \propto incident energy
 - Statistical fluctuations in the number of shower particles
- Energy deposited in sensitive layer \propto number of particles
 - Fluctuations from incident angle,
 - Particle velocity,
 - Landau energy deposition spread
- Counting particles removes these sources of error!!!

Shower of Particles

T. Price

Overview

- ILC Overview
- ILC Detector Requirements
- Electromagnetic Calorimetry
- Conventional ECAL
- Digital ECAL
- TPAC Sensor
- INMAPS Technology

TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

Digital ECAL The Concept

- Make a pixellated calorimeter to count the particles
- Digital readout i.e hit/no hit
- Ensure the pixels are small enough to avoid multiple particles passing through a single pixel
 - Avoid undercounting and non-linearity in higher particle density environments
- Max density of 100 $particles/mm^2$ leads to pixel sizes of 50 μm^2
- Digital variant of ILD ECAL would need 10¹² channels!!
- Dead area and power consumption per channel must be kept to a minimum

T. Price

Overview

ILC Overview

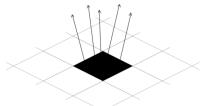
ILC Detector Requirements

Electromagnetic Calorimetry Conventional

Digital ECAL

TPAC Sensor

INMAPS Technology

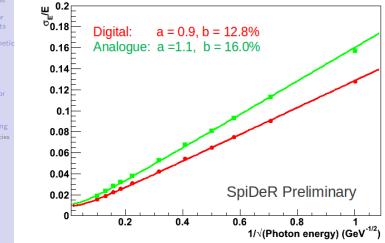

TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

Digital ECAL

The Concept



Analogue ECAL

DECAL $N_{pixels} = N_{particles}$

DECAL $N_{pixels} \leq N_{particles}$

Digital ECAL Energy Resolution Vs analogue ECAL

20 layers 0.6 X₀ & 10 layers 1.2 X₀

Digital Calorimetry

T. Price

Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional

ECAL Digital ECAL

TPAC Senso INMAPS

TPAC Testing

Pixel Efficiencie Noise Studies Shower Multiplicities Radiation Testing

Summary

T. Price

Overview

ILC Overview

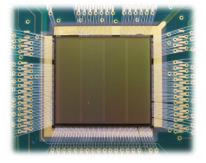
ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

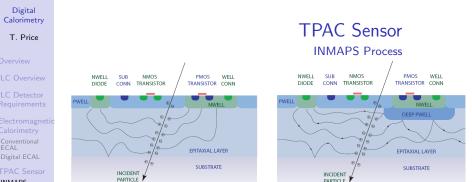
TPAC Sensor

INMAPS Technology

TPAC Testing


Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary


TPAC Sensor TeraPixel Active Calorimeter Sensor

CMOS sensor designed with the DECAL requirements in mind

- 168×168 pixel grid
- 50×50 μm^2 pixel size
- Digital readout
- Low noise
- Utilise INMAPS process
- 42 pixels served by one strip of SRAM and logic
- Charge collected by diffusion to signal diodes

TPAC Sensor

INMAPS Technology

TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

CMOS architecture causes parasitic charge collection at the N-wells reducing the pixel efficiency. INMAPS technology uses a deep P-well which inhibits the parasitic collection increasing the signal at the diodes. Allows use of standard full CMOS

- lower cost
- allows fabrication at multiple foundaries
- allows different resitivity epitaxial layers

T. Price

Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

TPAC Sensor INMAPS Technology

TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

TPAC Testing Test Beam Overview

Beam tests of TPAC sensors conducted at

- CERN 20-120 GeV pions
- DESY 1-5 GeV electrons

to study the sensor response to MIPs and particle showers

T. Price

Overview

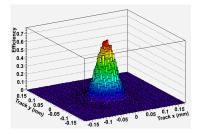
ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

TPAC Sensor INMAPS

TPAC Testing


Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

TPAC Testing Pixel Efficiencies to MIPS

Studies conducted for both pions and electrons at CERN and $\ensuremath{\mathsf{DESY}}$

- Formed a track in the event
- Project the track into sensor
- Look for hits around the projection and look for hit probability
- Fit the resulting distribution (right) to extract efficiency

T. Price

Overview

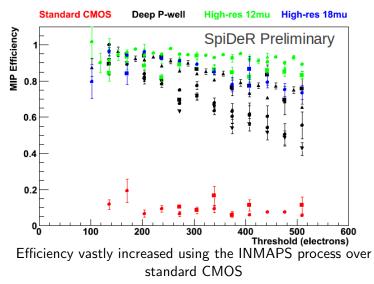
ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

TPAC Sensor

INMAPS Technology


TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

TPAC Testing

Pixel Efficiencies to MIPS

T. Price

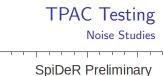
Overview

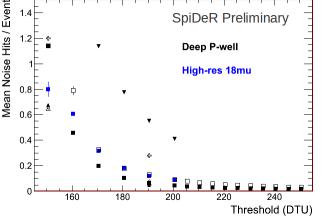
ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

TPAC Sensor


INMAPS Technology


TPAC Testing

Pixel Efficiencies

Shower Multiplicities Radiation Testing

Summary

1.2 noise hits out of 28224 pixels / event at lowest threshold so low noise requirement achieved

Changing the epitaxial layer does not affect noise rate

T. Price

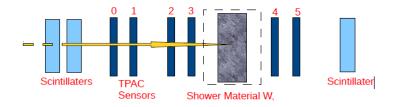
Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

TPAC Senso INMAPS


TPAC Testing Pixel Efficiencies

Shower Multiplicities Radiation

Summary

TPAC Testing Shower Multiplicities

At the DESY testbeam the electrons were showered through various amounts of tungsten to look at the sensor response to em showers at various positions within a DECAL without the need of a prototype

layers 0-3 used for tracking layers 4-5 used to detect shower

T. Price

Overview

- ILC Overview
- ILC Detector Requirements

<u>م</u>.≡

P_{sensor} / F

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

TPAC Sensor

INMAPS Technology

TPAC Testing

Pixel Efficiencies Noise Studies

Shower Multiplicities

Testing

Summary

TPAC Testing Shower Multiplicities

8 Multiplicity Low Threshold 1 GeV e⁺ 7 2 GeV e^{*} 3 GeV e⁺ 6 4 GeV e⁺ 5 4 3 2 SPiDeR Preliminary 0 2 8 10 12 Δ 6 Material Depth (x/X_0)

Multiplicity increases with energy as required for DECAL

T. Price

Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

TPAC Sensor INMAPS Technology

TPAC Testing Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

TPAC Testing Radiation Testing

Potential use of TPAC sensor technology in high radiation environments such as tracking and vertex systems. Need to know the sensor response to radiation!

- Multiple sensors irradiated with 50 KV X-rays
- Sensors held at 0 Volts and operating voltage
- Sensors exposed to various doses between 200 kRad and 5 MRad
- Mean noise and pedestal of the pixels tested after each dose

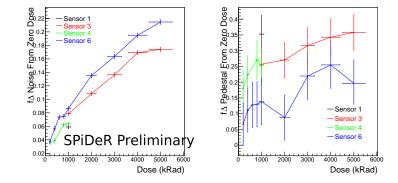
T. Price

Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL


TPAC Senso

INMAPS Technology

TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

TPAC Testing

Radiation Testing - Unpowered

At 1 MRad noise increase ~8 % rising to ~20 % at 5 MRad Pedestal increases by ~30 % Non-linear increases in pedestal at higher doses accredited to annealing

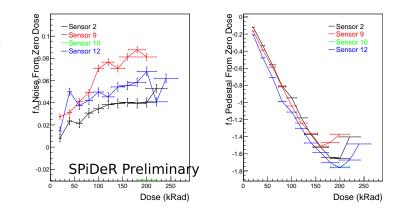
T. Price

Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL


TPAC Sense

INMAPS Technology

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

TPAC Testing Radiation Testing - Powered

Much lower doses achieved due to sensor readout problems above 200 kRad when powered

T. Price

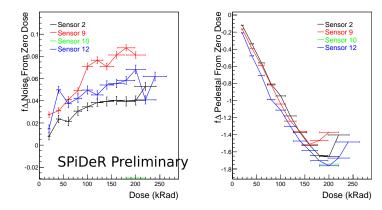
Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

TPAC Senso


INMAPS Technology

TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

TPAC Testing Radiation Testing - Powered

Powered noise increase at 200 kRad \approx Unpowered noise increase at 1 MRad Pedestal rapidly decreases showing different behaviour to unpowered sensor

Summary

Digital Calorimetry

T. Price

Overview

ILC Overview

ILC Detector Requirements

Electromagnetic Calorimetry Conventional ECAL Digital ECAL

TPAC Sensor

INMAPS Technology

TPAC Testing

Pixel Efficiencies Noise Studies Shower Multiplicities Radiation Testing

Summary

- Simple DECAL simulation shows an improved resolution over a conventional ECAL with significantly lower costs expected
- INMAPS process demonstrates an improved efficiency over standard CMOS
- Noise rate of 1.2 pixels per event
- Noise rate shows exponential decrease with theshold
- Tests have demonstrated the the DECAL idea is feasible
- Showers detected using TPAC sensors show an increased multiplicity with energy Essential for a DECAL
- Interest in the INMAPS process from outside the ILC community
- Small noise increase during radiation testing