

Differential Branching ratio and angular analysis of $B^+ \rightarrow K^+ \mu^+ \mu^-$ at LHCb IOP HEPP and APP group Annual Meeting 2012

Espen Eie Bowen

Rutherford Appleton Laboratory (STFC), University of Southampton

April 3, 2012

Outline

Theory

- Introduction
- Interest
- O Strategy
 - Branching fraction
 - Angular analysis
- Selection
 - Charmonium vetoes
 - Offline Selection
 - Peaking Background study
- In Efficiency Calculations
- 5 Fits
 - Mass fits
 - Angular fits
- Onclusions

Theory - Introduction

- $B^+ \rightarrow K^+ \mu^+ \mu^-$ is a flavour-changing-neutral-current (FCNC) decay.
- Proceeds via a $b \rightarrow s$ transition.
- FCNC decays forbidden at tree level, must occur through higher order loop diagrams (suppressed).
- May probe New Physics such as yet unobserved particles and processes.

Theory - Introduction

- $B^+ \rightarrow K^+ \mu^+ \mu^-$ is a flavour-changing-neutral-current (FCNC) decay.
- Proceeds via a $b \rightarrow s$ transition.
- FCNC decays forbidden at tree level, must occur through higher order loop diagrams (suppressed).
- May probe New Physics such as yet unobserved particles and processes.

• Measurement of branching ratio can help to further constrain the Wilson coefficient relation $|C_9| - |C_{10}|$ when combined with measurements from other channels such as $B^0 \rightarrow K^{*0}\mu^+\mu^-[1].$

- F_H and A_{FB} both sensitive to scalar and pseudoscalar operators.
- F_H and A_{FB} expected to be negligible in SM.
- Significant deviation from expectation would indicate New Physics.

Strategy - Branching Fraction Measurement

• The differential branching fraction is given by:

$$\frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to J/\psi K^+)} = \frac{N_{K^+ \mu^+ \mu^-}}{N_{J/\psi K^+}} \times \frac{\epsilon_{J/\psi K^+}}{\epsilon_{K^+ \mu^+ \mu^-}} \times BR(J/\psi \to \mu^+ \mu^-)$$

- $N_{K^+\mu^+\mu^-}$ and $N_{J/\psi K^+}$ are the measured yields of $K^+\mu^+\mu^-$ and $J/\psi K^+$ respectively, extracted from an unbinned maximum likelihood fit to the $m_{K^+\mu^+\mu^-}$ distribution.
- $\epsilon_{J/\psi K^+}/\epsilon_{K^+\mu^+\mu^-}$ is the total relative efficiency between the two channels and is calculated using simulated data.
- The values for $BR(B^+ \rightarrow J/\psi K^+)$ and $BR(J/\psi \rightarrow \mu^+ \mu^-)$ are taken from the PDG.
- The branching fraction is calculated in each of the 7 q^2 -bins (dimuon invariant mass) used in this analysis.

• The angular distribution is given by:

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{l}} = \frac{3}{4}(1-F_{H})(1-\cos^{2}\theta_{l}) + \frac{F_{H}}{2} + A_{FB}\cos\theta_{l}$$

- The angle θ_l is defined as the angle between the direction of the dimuon pair in the B⁺ (B⁻) rest-frame and the direction of the μ⁺ (μ-) in the dimuon rest-frame.
- A_{FB} is the forward-backward asymmetry and F_H is a flat parameter.
- A_{FB} and F_H are extracted with a simultaneous fit to the $m_{K^+\mu^+\mu^-}$ and $\cos\theta_I$ distributions in each of the 7 q^2 -bins used in this analysis.

Selection - Charmonium vetoes

- $B^+ \rightarrow J/\psi K^+$ and $B^+ \rightarrow \psi(2S)K^+$ have BFs ~100 and ~10 times larger than $B^+ \rightarrow K^+ \mu^+ \mu^-$.
- $B^+ \to K^+ \mu^+ \mu^-$ is isolated by vetoing their contributions.
- Veto is extended in low mass sideband to remove the radiative tail of the J/ψ and ψ(2S).
- Also extended in the upper mass sideband to the (non-Gaussian) tails of poorly reconstructed J/ψ and $\psi(2S)$.

Selection - Offline multivariate selection

- Multivariate selection using a Boosted Decision Tree (BDT).
- Variables are chosen that provide the greatest seperating power while not biasing the q² and cosθ₁ distributions.

Particle	Variables
B^+	DIRA
B^+	au
B^+	IP χ^2
B^+	End Vertex χ^2
B^+	рт
<i>K</i> +	Track χ^2/DOF
μ^{\pm}	рт
μ^{\pm}	IP χ^2

Selection - PID requirements

- PID requirements applied to select 'genuine' kaons.
- PID variables used are output of a Neurobayes neural network.
- 'Pure' samples obtained from $D^{*+} \rightarrow D^0 \{ \rightarrow K^+ \pi^- \} \pi^+$ and $D^{*+} \rightarrow D^0 \{ \rightarrow K^+ \pi^- \} K^+$ calibration samples.

Selection - Peaking background study

- An extensive peaking background study has been performed.
- Four types of peaking background were investigated:
 - Hadronic B⁺ decays.
 - $B^+ \rightarrow J/\psi K^+$ with a $K^+ \leftrightarrow \mu^+$ swap.
 - Semileptonic $B \rightarrow D$ decays.
 - $B^+ \rightarrow \pi^+ \mu^+ \mu^-$.

Total relative efficiency

• The total relative efficiency is given by:

- ϵ_{acc} is the geometric acceptance of LHCb.
- $\epsilon_{reco\&sel}$ is the combined detection, reconstruction and selection efficiency.
- $\epsilon_{trigger}$ is the trigger efficiency.

Fits to
$$m_{K^+\mu^+\mu^-}$$
 for $B^+ \to J/\psi K^+$ and $B^+ \to K^+\mu^+\mu^-$

$$B^{+} \rightarrow J/\psi K^{+} \qquad B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$$

$$\int_{0}^{0} \frac{1}{\sqrt{2}} \int_{0}^{0} \frac{1}{\sqrt{2}} \int$$

۲ ٠

Events / (186) 4000 3000 2000 1000 .E

 $B^+ \rightarrow K^+ \mu^+ \mu^-$

April 3, 2012

12 / 15

Mass fits - $B^+ \rightarrow K^+ \mu^+ \mu^-$ in bins of q^2

Angular fits - $B^+ \rightarrow J/\psi K^+$

• Simultaneous fit to the $m_{K^+\mu^+\mu^-}$ and $\cos\theta_I$ distributions for $B^+ \rightarrow J/\psi K^+$.

• Everything can be seen to be working.

Espen Eie Bowen (STFC)

- Analysis is in an advanced stage.
- Currently undergoing internal review within LHCb.
- Hope to publish results for A_{FB} and F_H in the near future.