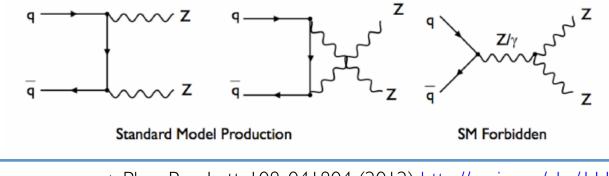


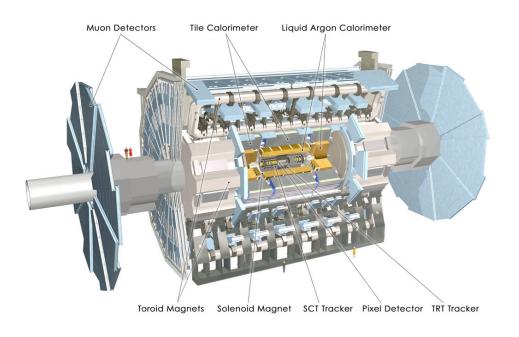
Experimental Particle Physics


Measurement of the total ZZ production cross section in the four-lepton channel using 4.7 fb⁻¹ of ATLAS data

Nick Edwards, University of Glasgow

Introduction

- ZZ production is a rare process but with striking signature and low background.
- An important probe of the structure of electroweak sector.
- The irreducible background to H->ZZ.
- Standard Model predicted cross section in the on-shell approximation is $6.5^{+0.3}_{-0.2}$ pb.
- I describe today a ZZ production cross section measurement in the four lepton (electron, muon) channel using the full dataset of 4.7fb⁻¹ collected by ATLAS in 2011.
- The two LO SM diagrams are shown below left. Gluon-gluon fusion also contributes 6.3% of the cross section.



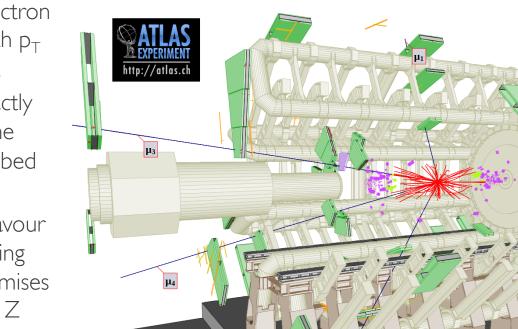
Ifb⁻¹ measurement: Phys. Rev. Lett. 108, 041804 (2012) <u>http://arxiv.org/abs/1110.5016</u> **4.7fb⁻¹ measurement:** ATLAS-CONF-2012-026 <u>https://cdsweb.cern.ch/record/1430735</u>

Detector and object selection

 Important detector systems for this measurement are the muon spectrometer, the inner tracking detector and the electromagnetic calorimeters.

<u>Muons</u>

- Combine Muon Spectrometer track or track segment with Inner Detector track.
- Kinematic acceptance: $|\eta| < 2.7$, $p_T > 7$ GeV


Electrons

- Combine EM Calorimeter cluster with Inner Detector track.
- Inner Detector tracks are fitted using a Gaussian Sum Filter to account for bremsstrahlung.
- Kinematic acceptance: | η | < 2.47, p₇ > 7 GeV.
- Apply requirements to leptons on ID track isolation, calorimeter isolation and longitudinal and transverse impact parameters to reject fake leptons.
- Leading lepton must have $p_T > 25$ (20) GeV for electrons (muons).

Event Selection

- Trigger using single electron and muon triggers, with p_T thresholds 18-22 GeV.
- Select events with exactly four leptons passing the object selection described previously.
- Form two opposite-flavour same-sign pairs, choosing the pairing which minimises sum of distances from Z mass: |m₁₂-m_z|+|m₃₄-m_z|.
- Both pairs required to be on-shell: 66 < m_z < 116 GeV.

Display of a selected ZZ-> $\mu^+\mu^-\mu^+\mu^-$ event with m^{4 μ} = 249.7 GeV and p_T^{4 μ} = 22.0 GeV

primary Z mass : 89.18 GeV $p_T(\mu_1) = 61.60 \text{ GeV}$

 $p_T(\mu_2) = 25.68 \text{ GeV}$ secondary Z mass : 88.03 GeV

 $p_T(\mu_3) = 42.69 \text{ GeV}$

 $p_T(\mu_4) = 38.60 \text{ GeV}$

Run Number: 183602, Event Number: 282919

Date: 2011-06-18, 06:36:40 CET

Updates from 1fb⁻¹ analysis

Increase in statistics: I fb⁻¹ measurement extremely statistically limited:

 $\sigma_{ZZ}^{\text{tot}} = 8.5^{+2.7}_{-2.3}(\text{stat})^{+0.4}_{-0.3}(\text{syst}) \pm 0.3(\text{lumi}) \text{ pb.}$

- Reduced $p_{\rm T}$ threshold on the $2^{\rm nd}, 3^{\rm rd}$ and $4^{\rm th}$ leptons from 15 GeV to 7 GeV.
- Increased muon acceptance from $|\eta| < 2.5$ to $|\eta| < 2.7$

✓ Increased signal acceptance by 6% overall.

 Moved to using electrons with tracks fitted using Gaussian Sum Filter to account for bremsstrahlung

 \checkmark Improves resolution of parameters in the bending plane.

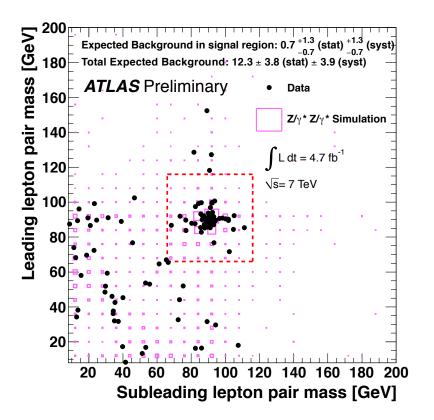
- Used a re-optimised electron identification algorithm giving higher efficiency for similar fake rejection.
- Tightened impact parameter cuts
 - ✓ Increases heavy flavour background rejection with minimal loss of signal efficiency.
- ✓ Overall, signal acceptance increased by approximately 30%.

Background Estimate

 Main backgrounds are Z->I⁺I⁻ with additional jets or photons, t-tbar, single-top and other diboson processes (WW,WZ). All involve one or more fake leptons.

In reality there are **True Leptons (T)** and objects that can **Fake Leptons (F)**, with a probability **f** for the fake object to be identified as a lepton. The background is: $N_{AF}^{\text{fake}} = N_{TTFF} \times f \times f + N_{TTTF} \times f$

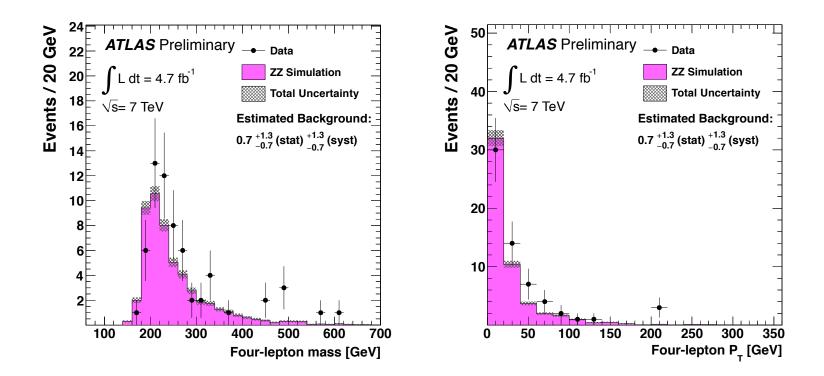
We can only actually *measure* the number of **selected leptons (L)** and number of **leptonlike jets that fail one or two of the lepton ID cuts (J)**. We can measure *FF*, the ratio of **''selected'' leptons to ''lepton-like'' jets in data**. The background estimate is then:


$$N_{4\ell}^{\text{fake}} = (N_{LLLJ} - N_{LLLJ}^{ZZ}) \times FF - N_{LLJJ} \times FF^2$$

Fake factors are measured using a Z-tag method:

- Tag an event by finding a good Z candidate
- Look for additional leptons in the event , categorize as L or J,
- Subtract the quantity of "real" leptons from WZ events using MC estimates.
- Parameterise *FF* in p_{T} and η .

Observed Events


- We observe 62 events in 4.7fb⁻¹of data.
 - Predicted background:
 0.7^{+1.3} -0.7 (stat) ^{+1.3} -0.7 (syst)
 - Predicted signal (MC):
 53.2 +1.1 (stat) ± 1.9 (syst)
- Sherpa (LO) used for signal predictions, scaled to predicted cross section of MCFM (NLO).
 - Cross checked with Pythia and gg2ZZ and found to be consistent.
- Dominant systematics arise from uncertainty on lepton identification efficiencies.
 - Evaluate using Tag and Probe measurements on large samples of Z->II events.

ZZ->4I Measurement at ATLAS - N. Edwards - HEPP Conference - April 2012

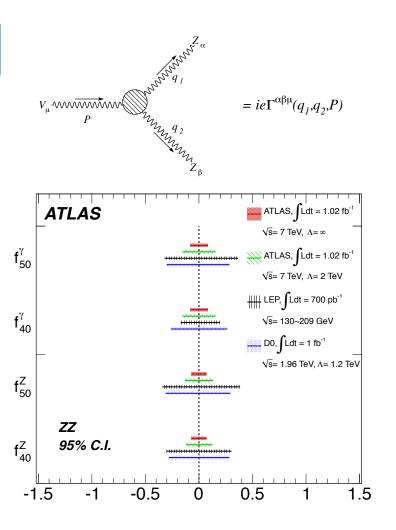
- **Candidate distributions**
 - Invariant mass (left) and transverse momentum (right) of the four lepton system.
 - Good agreement between data and Monte-Carlo.

Cross Section Measurement

- We first calculate a "fiducial cross section" in a phase space close to the experimental selection.
- This is extracted combining all four lepton channels and using a profile likelihood method, with systematic uncertainties included as nuisance parameters.
- We then extrapolate to the total cross section in the on-shell approximation, correcting for the acceptance of the fiducial cuts estimated using the MCFM NLO generator and the Z->II branching ratios.

Fiducial Phase Space

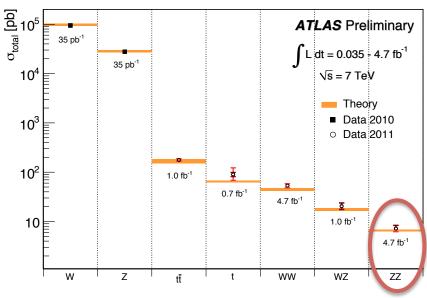
- ZZ -> |+ |- |+ |- (|= e, μ)
- $66 < m_{01} < 116 \text{ GeV}$
- $66 < m_{23} < 116 \text{ GeV}$
- p_T (lepton) > 7 GeV
- $|\eta$ (lepton) | < 2.7


 $\sigma_{ZZ \to \ell^+ \ell^- \ell^+ \ell^-}^{\text{fid}} = 21.2^{+3.2}_{-2.7} \text{ (stat)} ^{+1.0}_{-0.9} \text{ (syst)} \pm 0.8 \text{ (lumi) fb}$ $\sigma_{ZZ}^{\text{tot}} = 7.2^{+1.1}_{-0.9} \text{ (stat)} ^{+0.4}_{-0.3} \text{ (syst)} \pm 0.3 \text{ (lumi) pb}$

• Observed total cross section is consistent with the Standard Model cross section, calculated with MCFM and PDF set MSTW2008, of $6.5^{+0.3}_{-0.2}$ pb.

aTGC limits

- $\mathcal{L} = \frac{e}{m_Z^2} \left[f_4^V (\partial_\mu V^{\mu\beta}) Z_\alpha (\partial^\alpha Z_\beta) + f_5^V (\partial^\sigma V_{\sigma\mu} \tilde{Z}^{\mu\beta} Z_\beta) \right]$ • Search for general ZZV couplings where V = (Z, γ) , introduced using an effective Lagrangian
- given above.
 Couplings paramaterised by two CP-violating (f^V₄)
- and two CP-conserving (f_5^{V}) complex parameters. All are zero in the SM.
- Signature for aTGCs is enhanced cross section at high energies and at large scattering angles => observables proportional to M^{ZZ}, P_T^{ZZ} sensitive to aTGCs.
- Limits on aTGCs set using ZZ->4I cross section measured with the first 1fb-1 of the 2011 dataset using the observed number of events only.
- Limits are comparable with, or tighter than, those derived with measurements from LEP and the Tevatron.


Conclusions

- ZZ cross section measurement pushes the lower boundary of ATLAS Standard Model cross section measurements.
- Cross section measured using full 2011 dataset and found to be consistent with Standard Model prediction.
- Limits on aTGCs set using cross-section measured with 1 fb⁻¹ of the dataset: no deviation from SM prediction.

Future Plans

- Differential cross-section measurements.
- Update aTGC limits using full dataset and differential distributions.
- Push detector acceptance even further using forward electrons and calorimeter tagged muons.

w z ŧŦ

Extra Slides

ZZ->4I Measurement at ATLAS - N. Edwards - HEPP Conference - April 2012

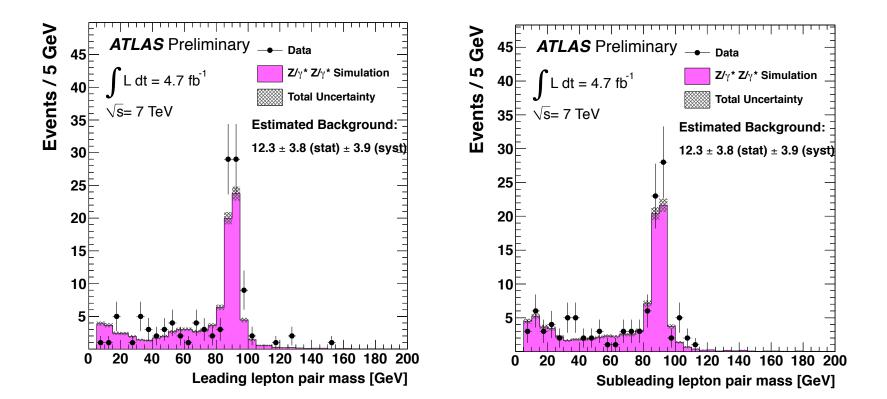
predicted background from MC using both the date driven technique and a Monte Carlo estimation, split by four lepton final states.

Observed Events by lepton channel

Final state	eeee	μμμμ	ееµµ	combined $(\ell\ell\ell\ell)$
Observed	15	21	26	62
Signal(MC)	$9.9 \pm 0.5 \pm 0.8$	$16.6 \pm 0.6 \pm 0.3$	$26.8 \pm 0.8 \pm 1.0$	$53.2 \pm 1.1 \pm 1.9$
Bkg(d.d.)	$0.6^{+0.7}_{-0.6}{}^{+0.8}_{-0.6}$	$< 0.3^{+0.5}_{-0.2}$	$0.3^{+0.9}_{-0.3}^{+0.9}_{-0.3}$	$0.7^{+1.3}_{-0.7}^{+1.3}_{-0.7}$
Bkg(MC)	0.3 ± 0.3	< 0.8	0.6 ± 0.6	1.0 ± 0.6

Table shows number of observed events, predicted signal from Monte Carlo, and

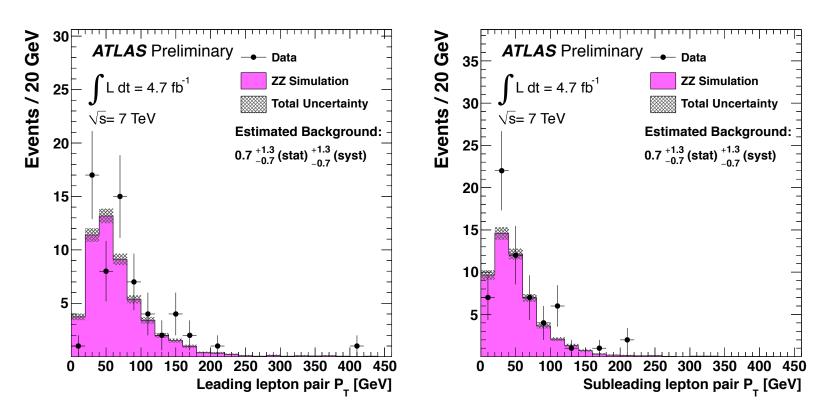
Fiducial cross section by channel:


- eeee: $6.6^{+2.0}_{-1.6}$ (stat) $^{+0.8}_{-0.5}$ (syst) $^{+0.3}_{-0.2}$ (lumi) fb
- $\mu \mu \mu \mu$: 5.5^{+1.3}_{-1.1} (stat) ^{+0.2}_{-0.1} (syst) ^{+0.3}_{-0.2} (lumi) fb
- ee μ μ : 9.1^{+2.1}_{-1.7} (stat) ^{+0.5}_{-0.4} (syst) ^{+0.4}_{-0.3} (lumi) fb

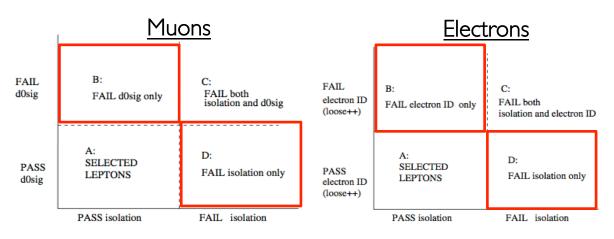
University of Glasgow

Experimental Particle Physics

Observed Events


Mass distributions of the leading and subleading lepton pair.

Observed Events


 Transverse momentum of the leading and subleading lepton pair.

- Lepton like jets (J) are objects that fall into either area B or D fail either impact parameter significance (d0sig) or isolation (muons) / fail either Loose++ or isolation (electrons).
- Selected Leptons (L) fall into area A pass all cuts.
- We only want to extrapolate from control regions close to the signal, so only allow a "leptonlike" jet J to fail one of the requirements (so exclude region C)

	Selected leptons	Lepton-like jets
Muons	Track iso < 0.15	$(d_0$ -significance > 3.5 and Track iso < 0.15 and Calo iso < 0.30)
	and Calo iso < 0.30	or (d_0 -significance < 3.5 and (Track iso > 0.15 or Calo iso > 0.30)
	and d_0 -significance < 3.5	
Electrons	Track iso < 0.15	(!Loose++ and Track iso < 0.15 and Calo iso < 0.30)
	and Calo iso < 0.30	or (Loose++ and Track iso > 0.15 and Calo iso > 0.30)
	and Loose++	