

Lepton Jets at CMS

Benjamin Radburn-Smith
University of Manchester & STFC Rutherford Appleton Laboratory

<u>Outline</u>

- Background to Theory
- Theoretical Model
- Previous Searches
- Our Model
- Simulation Benchmarks
- General Analysis Strategy
- Selecting Electron Jets
- Summary

Theoretical Background

- The positron fraction of cosmic rays rises between 20-200 GeV, without any antiproton fraction excesses
 - Not from secondary production processes resulting from cosmic ray nuclei interacting with the interstellar gas
 - As seen by many experiments including PAMELA satellite
 - arXiv:0810.4995
 - The FERMI LAT space telescope satellite
 - arXiv:1109.0521
- Also excess in the electron+positron spectrum
 - Seen by various experiments including MAGIC, an Imaging Atmospheric Cherenkov Telescope
 - arXiv:1110.4008

Theoretical Model

- Hidden Valley models can give a unified explanation of these anomalies
 - If the dark sector is light at GeV scale
- Introduce a light hidden/dark gauge sector which couples weakly to the SM
 - Dark Matter annihilates into the dark sector
 - Dark photon, through mixing with the SM / photon, goes to leptons or hadrons depending on the its mass
 - Cascade decays in the dark sector can produce impressive signatures

Previous Searches

• D0

- arXiv:0905.1478: 4.1/fb; Photon+2 leptons+MET; no evidence found -> set limits
 - Evade: Models without photons/high multiplicity
- arXiv:1008.3356: 5.8/fb; 2x(2 leptons)+MET;no evidence found -> set limits
 - Evade: fat lepton jets/high multiplicity

CDF

- arXiv:1202.1260: 5.1/fb; V+ counting many low E leptons; no evidence found -> set limits
 - Evade: Low lepton multiplicity/No leptonic V

Josh Ruderman

Previous Searches

CMS

- arXiv:1106.2375: 35/pb; Find the γ_d resonance from pairs of muons; no evidence found -> set limits
 - Evade: If m(γ_d) is lower than m(μμ)/ dominated 3 body decays

ATLAS

- CONF-2011-076: 40/pb; 2x(2 muons);no evidence found -> set limits
 - Evade: If $m(\gamma_d)$ is lower than $m(\mu\mu)/fat$ jets/high multiplicity

Josh Ruderman

Our Model

- It is possible for the Higgs to decay, either directly or through SUSY, into a light hidden sector
 - arXiv:1002.2952
- A m(γ_d) of 100 MeV decays exclusively to electrons
- Prompt decay of γ_d
 i.e. not long lived decays
- 3 dark sector particles, shorter decays gives more MET
- V+Higgs->2 Electron Jets

Simulation Benchmarks

- By varying the masses of the particles in the hidden sector we can dramatically alter the characteristics of the Electron Jets
 - We are initially focussing on a 3 step decay (ie 3 dark sector masses)
- Used a Higgs particle gun simulation and adjusted the 3 masses
 - Can try to cover as much phenomenological phase space as possible

- 1) Jet mass/pt
- 2) Number of tracks with half of the jet energy
- 3) Energy in dR<0.25/energy in dR<0.5
- 4) Number of tracks with half of the jet energy/total number of jets
- 5) missing pt
- 6,7,8) 3 dark sector masses

Simulation Benchmarks

- By varying the masses of the particles in the hidden sector we can dramatically alter the characteristics of the Electron Jets
 - We are initially focussing on a 3 step decay (ie 3 dark sector masses)
- Used a Higgs particle gun simulation and adjusted the 3 masses
 - Can try to cover as much phenomenological phase space as possible

- 1) Jet mass/pt
- 2) Number of tracks with half of the jet energy
- 3) Energy in dR<0.25/energy in dR<0.5
- 4) Number of tracks with half of the jet energy/total number of jets
- 5) missing pt
- 6,7,8) 3 dark sector masses

Analysis Strategy

- Trigger off of the associated W/Z
 - +di-jets, +MET as thresholds change
 - Backup trigger of double electron with loose isolation
- Reconstruct the associated W/Z
- Run Electron Jet Identification over Particle Flow Jets
- Then count the number of events in a sliding m_{ii} window
- General strategy is to identify the Lepton Jets through the properties of the jets
 - Despite this, attempted a γ_d resonance search in the same manner as

the muon analysis

Electron Jet Identification

- Started with a general scheme of cutting on EMF and Jet ET/PT
 - As was used in arXiv:1007.3496
 - Found poor efficiency for signal and single electron backgrounds
- Then used Boosted Decision Trees in order to perform a discrimination of multiple classes
 - Boosted signal efficiency and decreased our background
 - But concerned over model dependence
- Multivariate Visualisation techniques independently confirmed the interesting variables found by BDT

Electron Jet Identification

- Took lessons from BDT and developed a new scheme which was both efficient and model independent
 - Based on number of electrons & number of tracks found inside the Electron Jet, the EMF of the jet, and the number of tracks/pT
 - For the case where only one electron is successfully reconstructed apply an electron shape cut which is p_T dependant
 - Good efficiency for our 4 benchmark signal models
 - Also separates our signal from qcd and single electron backgrounds

Electron Jet Identification

- Also from looking at the visualisation output, attempted a selection scheme based on the previous scheme
 - But in the case of reconstructing only one electron; use the relative isolation of that electron (expecting there to be more noise from the other electrons compared to background)
 - Not dependant on pT
 - Unfortunately this turns out to be model dependant as well
 - Perhaps by using different reconstruction techniques this selection might still work

<u>Summary</u>

- Lepton Jets can be used to explain astrophysical results
- Currently concentrating on the case where the dark photon decays exclusively to electrons, producing Electron Jets
- We have created benchmarks for our Monte Carlo and now produced simulations
- Developed a selection criteria for Electron Jets
- We plan to have 2011 results within the next couple of months
- Can extended the analysis by including 5 step models, and also by changing the dark photon mass (e.g. looking at hadronic mode)

Bonus Level

Multivariate Visualisation: Parallel Coordinates

Lepton Jets at CMS - Benjamin Radburn-Smith

Bonus Level

Multivariate Visualisation: Parallel Coordinates

5 Instances in 5D

20k Instances in 5D

cern.ch/benjamin

Lepton Jets at CMS - Benjamin Radburn-Smith