

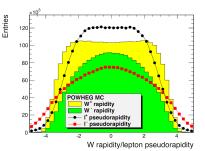
æ

Electron Charge Asymmetry in $pp \rightarrow W + X \rightarrow lv + X$ production @ $E_{cm} = 7$ TeV

Martyn Jarvis

April 3, 2012

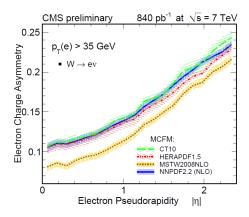
Outline


Introduction		
History		
Analysis		
Systematics		
Results		

◆□▶ ◆□▶ ◆目▶ ◆目▶ = 三 つへの

Motivation

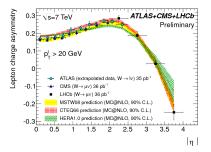
- In pp collisions, more W⁺ are expected than W⁻ due to the excess of u valence quarks wrt d quarks.
- An asymmetry measurement as a function of boson rapidity can be used to constrain PDFs.
- Boson rapidity is not directly accessible
- Direct accessible measurement is the lepton charge asymmetry


$$A_{th}(\eta) = \frac{\frac{d\sigma}{d\eta}(W^+ \to e^+\nu_e) - \frac{d\sigma}{d\eta}(W^- \to e^-\nu_e)}{\frac{d\sigma}{d\eta}(W^+ \to e^+\nu_e) + \frac{d\sigma}{d\eta}(W^- \to e^-\nu_e)}$$
(1)

This asymmetry is given by the combination of the W production asymmetry and the well understood parity violation asymmetry in the W decay.

Motivation

- Theoretical prediction precision 4 – 5%
- Current predictions for the asymmetry at the LHC do not agree



History

- Previous CMS measurement with the full 2010 dataset of 36pb⁻¹ in both electron and muon channel
- Lepton charge asymmetry and W charge asymmetry also been studied at ATLAS and LHCb
- Muon channel measurement using 234pb⁻¹ of 2011 dataset

 This new measurement has been performed with 840pb⁻¹ of data from the 2011 dataset.

Analysis Overview

- $W \rightarrow e\nu$ characterised by
 - High Pt lepton
 - Missing transverse energy (MET) due to neutrino
- Background contributions,
 - EWK background ($W \rightarrow \tau \nu$, Drell-Yan)
 - tī background
 - QCD background (multi-jet, photon+jet)
- The number of the electron / positron is extracted from a extended binned likelihood fit of the MET distribution
- ▶ 11 bins in $|\eta|$
 - $\blacktriangleright~0.0 < |\eta| <$ 2.4 in bin widths of 0.2
 - [1.4 1.6] bin excluded because of the transition region between Ecal Barrel and Ecal Endcap

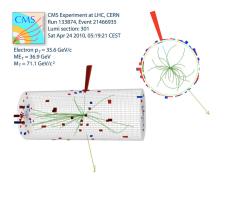


Image: A matrix and a matrix

Event Selection

- Electron Selection:
 - \triangleright $P_T > 35 GeV$
 - Constrained by trigger
- Electron Identification
 - Track cluster matching
 - Shower shape and H/E
 - Track, ECAL and HCAL isolation
 - Conversion rejection
- Z veto
 - ▶ 2nd lepton with $P_T > 15 \text{ GeV}$
- Require that all three methods of charge assignment agree to reduce misassignment (Gaussian Sum Filter, Kalman Filter, Relative phi position of cluster center and first tracker hit)

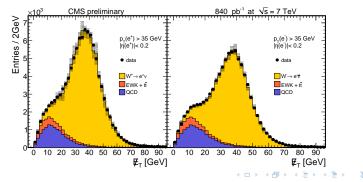

	$P_T > 35 \text{ GeV}$
$W \rightarrow e\nu$	76.2%
QCD Background	16.0%
EWK Total Background	7.8%
EWK DYtautau	0.2%
EWK DYee	6.4%
EWK Wtaunu	0.8%
EWK ttbar	0.4%

Table: Composition of selected events.

Selected Events

- Apply electron selection, then extended binned maximum likelihood fit to the MET distribution for electrons and positrons separately
- Two template shapes:
 - ▶ Signal + EWK backgrounds : MC + correction from $Z \rightarrow ee$ recoil in data
 - QCD shape is determined using a signal-free control sample obtained by inverting a subset of the electron ID criteria

Systematics and Corrections

- To compare with the theoretical value, the measured lepton asymmetry has to be corrected for experimental effects:
 - Charge mis-id (ω):
 - Introduces a dilution factor to the real asymmetry
 - Evaluated from the ratio same-sign / opposite-sign Z yield
 - Statistical error propogated to asymmetry as systematic error
 - Relative detection efficiency ($R = \epsilon^+/\epsilon^-$) between electrons and positrons:
 - The detection efficiency is different for electrons and positrons and produces a bias in the measured asymmetry
 - Measured with tag and probe.
 - Systematic error (energy scale and signal shape) cancel out in the ratio R, only the statistical
 error is propagated to R

$$\mathcal{A}_{R} = \frac{1}{1 - 2\omega} \frac{\mathcal{A}_{M}(R+1) - (R-1)}{(R+1) - \mathcal{A}_{M}(R-1)} \simeq \frac{1}{1 - 2\omega} \left(\mathcal{A}_{M} - \frac{(R-1)(1 - \mathcal{A}_{M}^{2})}{2} \right)$$
(2)

Systematics and Corrections

- Signal extraction method
 - Systematic uncertainties evaluated by varying the shapes used in the fits
- Energy Scale and Resolution
 - The electron energy resolution and scale can introduce a bias on the asymmetry, due to the effect of resolution for leptons with a transverse momentum close to P_T cut.
 - The correction factor has been evaluated by comparing the asymmetry at gen level and the asymmetry after simulating the particle-matter interaction
 - An additional data/mc correction is applied to account for differences between data and simulation

$$P_{T}^{sim} = P_{T}^{gen} \otimes \operatorname{Res}^{MC} \otimes \operatorname{Res}^{Data/MC}$$
(3)

< ロ > < 同 > < 回 > < 回 > < □ > <

where:

- \triangleright P_T^{gen} is from resbos with CT10
- Res^{MC} is from a $(W \rightarrow e\nu)$ MC sample
- Res^{Data/MC} is from a residual data/MC correction

Summary of Systematic Uncertainties

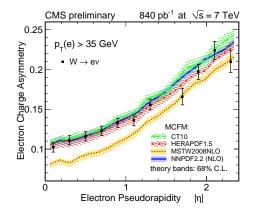

	<u> </u>			<u></u>	E //: :	Ξ.
	Stat	Signal	Energy	Charge	Efficiency	
	Error	Yield	Scale and Res.	MisId.	Ratio	
$0.0 < \eta < 0.2$	3	1.8	0.6	0.0	4.5	-
$0.2 < \eta < 0.4$	3	2.5	0.6	0.0	4.4	
$0.4 < \eta < 0.6$	3	2.7	0.3	0.0	4.4	
$0.6 < \eta < 0.8$	3	2.5	0.3	0.0	4.4	
$0.8 < \eta < 1.0$	3	1.9	0.6	0.1	4.4	
$1.0 < \eta < 1.2$	3	2.4	1.0	0.1	4.9	
$1.2 < \eta < 1.4$	3	2.6	0.8	0.1	5.4	
$1.6 < \eta < 1.8$	3	3.1	0.8	0.1	9.2	
$1.8 < \eta < 2.0$	3	2.0	1.6	0.2	8.7	
$2.0 < \eta < 2.2$	3	2.0	2.6	0.3	10.0	
$2.2 < \eta < 2.4$	4	2.9	2.4	0.3	12.5	

Table: Summary of systematic errors, $(\times 10^{-3})$.

- The efficiency ratio is the dominant source of systematic error on our measurement
- This is limited by statistics of the Z data sample
- We also give a full error correlation matrix with the measurement (backup)

Results

Conclusion

- Lepton charge asymmetry has been measured in $W \rightarrow e\nu$ for $P_T > 35$ GeV in 11 $|\eta|$ bins with 840 ${\rm pb}^{-1}$
- $\sigma(Ae) = (6 14) \times 10^{-3}$
- This measurement data with full error correlation matrix will be used by theorists to improve the knowledge of PDFs

< □ > < 同 > < 回 > < □ > <

Backup

<□> <□> <□> <□> <=> <=> <=> <=> ○へ⊙

Martyn Jarvis Electron Charge Asymmetry

Selection

Variable	cut value (barrel)	cut value (endcap)				
ID Cuts						
H/E	0.04	0.025				
$\Delta \phi$	0.06	0.03				
$\Delta \eta$	0.004	0.007				
$\sigma_{\eta\eta}$	0.01	0.03				
Isolation Cuts						
ISO _{trk} / E _T ISO _{ecal} / E _T	0.09	0.04				
ISO _{ecal} / ET	0.07	0.05				
ISOhcal / ET	0.10	0.025				
Conversion Rejection Cuts						
Missing Hits	<	≤ 0				
Dist Dcot	>	0.02				

Table: Electron selection.

・ロト ・日下・ ・ 日下

< ≣⇒

æ

Results

Table: Summary of the measured charge asymmetry results. All values are in units $\times 10^{-3}$.

	Measured	Theory Prediction				
	Asymmetry (A)	CT10	HERAPDF	MSTW	NNPDF	
$0.0 < \eta < 0.2$	$102 \pm 3 \pm 5$	109^{+5}_{-5}	106^{+4}_{-8}	83 ⁺³ -5	107 ± 5	
$0.2 < \eta < 0.4$	$111 \pm 3 \pm 5$	$^{114}_{-5}^{+5}$	110^{+4}_{-8}	$^{85^{+3}_{-5}}$	110 ± 5	
$0.4 < \eta < 0.6$	$116\pm3\pm5$	$^{119}_{-5}^{+5}$	115^{+4}_{-8}	92^{+3}_{-5}	116 ± 5	
$0.6 < \eta < 0.8$	$123\pm3\pm5$	126^{+5}_{-5}	122^{+4}_{-8}	98^{+3}_{-5}	123 ± 5	
$0.8 < \eta < 1.0$	$133 \pm 3 \pm 5$	138^{+5}_{-6}	132^{+4}_{-8}	108^{+4}_{-5}	$134{\pm}5$	
$1.0 < \eta < 1.2$	$136 \pm 3 \pm 6$	146^{+6}_{-6}	140^{+5}_{-8}	120^{+4}_{-5}	$145{\pm}5$	
$1.2 < \eta < 1.4$	$156 \pm 3 \pm 6$	164^{+6}_{-7}	153^{+5}_{-7}	136^{+5}_{-5}	$158{\pm}5$	
$1.6 < \eta < 1.8$	$166 \pm 3 \pm 10$	195 ⁺⁸ -9	181^{+5}_{-5}	168^{+5}_{-5}	190 ± 4	
$1.8 < \eta < 2.0$	$197 \pm 3 \pm 9$	207+8	196^{+4}_{-3}	$\frac{184+6}{-5}$	206 ± 4	
$2.0 < \eta < 2.2$	$224 \pm 3 \pm 11$	224+8	211^{+5}_{-3}	198^{+6}_{-5}	219 ± 4	
$2.2 < \eta < 2.4$	$210 \pm 4 \pm 13$	$^{241}^{+8}_{-12}$	225^{+9}_{-4}	214^{+6}_{-5}	$_{231\pm 5}$	

Covariance Matrix

	[0.0, 0.2][0.2, 0.4]	[0.4, 0.6]	[0.6, 0.8]	[0.8, 1.0]	[1.0, 1.2]	[1.2, 1.4]	[1.6, 1.8]	[1.8, 2.0]	[2.0, 2.2]	[2.2, 2.4]
[0.0, 0.2]	23.7	2.6	2.2	2.5	2.7	2.9	2.9	2.9	2.8	3.1	4.2
[0.2, 0.4]	2.6	26.2	2.6	2.9	3.1	3.3	3.4	3.2	3.0	3.9	4.7
[0.4, 0.6]	2.2	2.6	26.6	2.6	2.8	2.9	3.2	2.9	2.5	3.3	4.1
[0.6, 0.8]	2.5	2.9	2.6	25.6	3.3	3.4	3.7	3.3	2.8	3.7	4.7
[0.8, 1.0]	2.7	3.1	2.8	3.3	23.3	3.9	4.2	3.7	3.4	4.6	5.6
[1.0, 1.2]	2.9	3.3	2.9	3.4	3.9	30.8	4.5	4.1	4.0	5.7	6.8
[1.2, 1.4]	2.9	3.4	3.2	3.7	4.2	4.5	36.5	4.3	3.7	5.8	6.7
[1.6, 1.8]	2.9	3.2	2.9	3.3	3.7	4.1	4.3	94.9	3.8	5.1	6.2
[1.8, 2.0]	2.8	3.0	2.5	2.8	3.4	4.0	3.7	3.8	82.4	6.2	7.0
[2.0, 2.2]	3.1	3.9	3.3	3.7	4.6	5.7	5.8	5.1	6.2	110.7	10.3
[2.2, 2.4]	4.2	4.7	4.1	4.7	5.6	6.8	6.7	6.2	7.0	10.3	171.0

Table: Covariance matrix, $(\times 10^{-6})$.

< ロ > < 部 > < き > < き > <</p>

臣