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What are Gravitational VWaves ?
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—> Action at a distance.

Newtonian Gravity — F =

Limiting, finite speed of
propagation for information

In General Relativity, information about sources of
gravity is carried at the speed of light by gravitational waves.

Special Relativity =
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Sensing gravitational waves

The rubber sheet analogy is imperfect. In fact, gravitational
waves cause components of the metric tensor to oscillate. For example:
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These oscillations cause massive objects in free fall to oscillate
For the waves above (+ polarized), a ring of test masses would do this:
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Indirect Evidence for Gravitational VWaves

Binary pulsar PSR1913+16, Hulse and Taylor, 1976

Comparison between observations of the binary pulsar
PSR1913416, and the prediction of general relativity based on
loss of orbital energy via gravitational waves
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Anticipated Signal Strength

For an optimistic source,
like a neutron star pair
inspiral in the Virgo cluster,
20 Mpc from here,
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Two free masses separated by 4km have their
separation distorted by about 1/250 of a proton diameter !



Detection methods

METHOD FREQUENCY/SOURCE z

Resonant Detectors narrow band, fewx100 Hz—few kHz.

Ground based interferometers ~ 10Hz — ~ 8kHz
Space based interferometers ~107*Hz — ~ 1Hz

Pulsar timing measurements ~ 107" Hz — ~ 10~ "Hz

CMBR polarisation z = 1100, z = 10



Resonant Detectors
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Figure 3. Left: Schematic of the resonant sapphire transducer configuration for Niobe as a 3-mode
detector. Right: Close up of the resonant sapphire transducer, the fundamental clapping mode of the
slotted sapphire can be tuned to the main resonant detector (Niobe or Sphere) near 700 to 800 Hz.



Ground Based Interferometers
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http://www.ligo.caltech.edu/docs/P/P720002-01/P720002-01.pdf
http://www.ligo.caltech.edu/docs/P/P720002-01/P720002-01.pdf
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Livingston beam saitter installation

< € < <

35W CW output 1.06um laser amplifier (Enhgnceg LIGO)

Initial LIGO fused silica optics
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Norma“'y the interferometer, is operated on a dark fringe, with differential
length signals being read out using a phase, modulation scheme on the laser light.
This yields a signal shat is linear in the gravitational wave amplitude
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If We are on a dark fringe, where does the laser light go? Back towards the laser.
"+ To maximise power at the beam splitter, a mirrok is placed between the light
source and the interferometer is operated as a resonator.
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Finally, the S|gnal detected is proportional to the phase shift of photons enterln the arms.
So make the arms as long as p055|b|e but also make the arms into resonators, so that

each photon makes multiple trips (around 100) downs the arms before returning to the beam splitter.
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Advanced LIGO Upgrade

Aim: A factor of 10 reduction in noise floor compared
to initial LIGO

Enhancements: Active seismic isolation
Reduced thermal noise suspensions
Higher laser power
More sensitive and flexible optical layout.

Current status: Advanced LIGO has started.
U.S. (NSF), UK. (STFC), and German funding.
Turn-on scheduled for 2014.
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FUTURE Gravitational Wave Interferometer Network




Interferometry in Space

The seismic wall between 10 and 100Hz precludes
observations below |0Hz using ground based instruments

Space based instruments can be used to look at lower f

These instruments have their own difficulties

* They are expensive.

* They must work first time in space.

* They must survive launch.

* They must not rely on resonance between spacecraft.
* The test masses must be freely floating.
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Pulsar Timing

International pulsar timing array project
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Figure 2. Simulation of the induced timing residuals for PSR B1855+09 caused by a postulated
supermassive binary black-hole system in the radio galaxy 3C66B.



CMBR polarization measurements

® The polarization spectrum of the microwave
background is sensitive to primordial gravitational
waves from the inflationary era.
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Conclusions

Gravitational wave searches are a source of a great deal
of scientific activity

Ground based interferometry with LIGO,Virgo, GEO and
Tama is now very mature.

Detector upgrades make detection of some sources very
likely, 2014-2020.

Space-based LISA detector strongly supported by ESA.

Low frequency searches with pulsar timing and/or CMBR
polarisation results may detect too!

It’s an exciting time to be working in this field.



