Search for CP violation in charm decays at LHCb Focus on the $D^+ o K^-K^+\pi^+$ channel

Hamish Gordon, on behalf of the LHCb Collaboration

University of Oxford

03-04-2012

Introduction Sensitivity studies

Introduction: CP violation in charm

CP violation in charm is only possible in the Standard Model in singly Cabibbo suppressed D decays

Introduction Sensitivity studies

Introduction: CP violation in charm

CP violation in charm is only possible in the Standard Model

in singly Cabibbo suppressed D decays

Introduction: CP violation in charm

CP violation in charm is only possible in the Standard Model

in singly Cabibbo suppressed ${\it D}$ decays

- CP violation (CPV) arises when tree and penguin amplitudes contribute to the same final state with different relative weak and strong phases.
- ▶ LHCb recently searched for a difference between the CP asymmetries of D 0 → K $^-$ K $^+$ and D 0 → $\pi^-\pi^+$ and found evidence of CPV at the 3.5 σ level 1 , and CDF now have a similar result
- This can be explained within the Standard Model, but only just.
- ▶ Today I focus on an earlier search at LHCb using the 2010 dataset, which did not find evidence for CPV but has potential to do so in future.

Outlook

Introduction: multibody decays at LHCb Search for CP violation in $D^+ \to K^-K^+\pi^+$

- ▶ Three-body *D* decays are dominated by intermediate resonances.
- ▶ Interference between resonances with non-zero relative weak and strong phases leads to \mathcal{CP} violation in a region of the Dalitz plot.
- ▶ The \mathcal{CP} violation would be observed as a localised asymmetry between the numbers of D^+ and D^- decays.

Introduction: multibody decays at LHCb Search for CP violation in $D^+ \to K^-K^+\pi^+$

- ▶ Three-body *D* decays are dominated by intermediate resonances.
- ▶ Interference between resonances with non-zero relative weak and strong phases leads to \mathcal{CP} violation in a region of the Dalitz plot.
- ▶ The \mathcal{CP} violation would be observed as a localised asymmetry between the numbers of D^+ and D^- decays.

Introduction: multibody decays at LHCb Search for CP violation in $D^+ \to K^-K^+\pi^+$

- ▶ Three-body *D* decays are dominated by intermediate resonances.
- ▶ Interference between resonances with non-zero relative weak and strong phases leads to CP violation in a region of the Dalitz plot.
- ▶ The \mathcal{CP} violation would be observed as a localised asymmetry between the numbers of D^+ and D^- decays.

- ➤ This decay is studied with 35pb⁻¹ of data taken in 2010^a
- ➤ This is 20 times more data than was used in previous analyses at CLEO-c
- ► We now have 1fb⁻¹ of data on tape

The LHCb experiment

LHCb is a forward spectrometer for flavour physics at the LHC

- b and c cross sections peak at high rapidity
- ▶ High precision silicon strip detector 7mm from the LHC beams (the VELO) provides very precise tracking and vertexing
- This allows us to separate *D*'s that are produced from *B* decays, and those which come from the proton-proton collision directly

- Two RICH detectors distinguish kaons from pions and protons
 - This allows us to separate
 Cabibbo-suppressed decays from their more abundant
 Cabibbo-favoured cousins

Selecting the signal

- ▶ Thanks to the high performance of the LHCb detector, clean signals are easy to select with cuts on simple kinematic variables like transverse momentum, impact parameter, etc.
- However it is important to maintain a relatively uniform efficiency across the Dalitz plot to maximise the sensitivity to CPV

- We have around 370,000 signal D[±] decays with around 90% purity
- ► The Cabibbo-favoured $D_s^+ \to K^-K^+\pi^+$ is an ideal control channel more on this later

Analysis strategy

Search for CP violation in $D^+ \to K^- K^+ \pi^+$

▶ To search for charge asymmetries, the Dalitz plot is binned and for each bin a local \mathcal{CP} asymmetry variable is defined²,

$$S_{CP}^{i} = \frac{N^{i}(D^{+}) - N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + N^{i}(D^{-})}}$$
(1)

where $N^i(D^+)$ and $N^i(D^-)$ are the numbers of D^\pm candidates in the $i^{\rm th}$ bin

Analysis strategy

Search for CP violation in $D^+ \to K^- K^+ \pi^+$

▶ To search for charge asymmetries, the Dalitz plot is binned and for each bin a local \mathcal{CP} asymmetry variable is defined²,

$$S_{CP}^{i} = \frac{N^{i}(D^{+}) - N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + N^{i}(D^{-})}}$$
(1)

where $N^i(D^+)$ and $N^i(D^-)$ are the numbers of D^\pm candidates in the $i^{\rm th}$ bin

▶ In order to cancel the effect of production or detection (and \mathcal{CP}) asymmetries that are constant across the Dalitz plot, we introduce the ratio of the overall D^+ and D^- yields, α :

$$S_{CP}^{i} = \frac{N^{i}(D^{+}) - \alpha N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + \alpha^{2}N^{i}(D^{-})}}, \quad \alpha = \frac{N_{\text{tot}}(D^{+})}{N_{\text{tot}}(D^{-})}, \quad (2)$$

A p-value for consistency with no \mathcal{CP} violation in the Dalitz plot is generated from a χ^2/ndf , $\chi^2 = \sum (S_{CR}^i)^2/(N_{bins} - 1)$

Sensitivity studies

Toy MC studies performed with CLEO-c amplitude model²:

- To check we don't get false positive signals where no CPV exists
- To get an idea of the sensitivity to foreseeable types of CPV
- To guide us in developing "adaptive" binning schemes for the Dalitz plot (though we also use simple grids of same-sized "uniform" bins)

²PRD **78** 072003 (2008)

Sensitivity studies

Toy MC studies performed with CLEO-c amplitude model²:

- To check we don't get false positive signals where no CPV exists
- To get an idea of the sensitivity to foreseeable types of CPV
- To guide us in developing "adaptive" binning schemes for the Dalitz plot (though we also use simple grids of same-sized "uniform" bins)

- Models work as expected, and suggest we would observe, with 2010 data, a CP-violating phase in the $\phi(1020)$ of 5° at the 3σ C.L. with approximately 90% probability
- ▶ Similarly, we're sensitive to about 11% CPV in $\kappa(800)$ amplitude

²PRD **78** 072003 (2008)

Control modes and related checks

We checked that we are not sensitive to asymmetries due to (for example) detector effects or backgrounds

- ▶ In principle, momentum-dependent material interactions or acceptance effects could cause charge asymmetries which vary across the Dalitz plot
- ▶ In the control modes $D^+ \to K^- \pi^+ \pi^+$ and $D_s^+ \to K^- K^+ \pi^+$, and in all mass sidebands, no CPV is expected
- No significant asymmetries are seen

Results

We observe no evidence of CPV in this decay

Binning	χ^2/ndf	<i>p</i> -value (%)
(a) Adaptive I	32.0/24	12.7
(b) Adaptive II	123.4/105	10.6
(c) Uniform I	191.3/198	82.1
(d) Uniform II	519.5/529	60.5

Outlook

There is strong motivation to update this measurement with the much larger 2011 dataset (with \sim 8 million signal decays)

- ▶ The technique can also be applied to, for example, $D^+ \to \pi^- \pi^+ \pi^+$.
- In this channel the detector asymmetries are simpler (for example, we do not require the RICH detectors)
- ► Alternative strategies are also under study: can perform an unbinned search by summing nearest-neighbour points³
- Lastly, it is possible to look in a particular part of the Dalitz plot, e.g. the ϕ resonance, and this also allows one to cancel detector effects