

Measurements of the total transverse energy in pseudorapidity bins in proton-proton collisions at √s=7 TeV with ATLAS

**Peter Wijeratne** 

Tuesday 3<sup>rd</sup> April 2012 IOP parallel session

### Introduction and motivation



Dominant process at the LHC is gluon-gluon interaction.



• Soft QCD is non-perturbative – can not derive from 1<sup>st</sup> principles

Motivates 'tuning' of Monte Carlo (MC) models to experimental data.

# **Analysis aims**



To best simulate these soft processes, need as much information as possible.

- Utilise full coverage of ATLAS detector ( $|\eta| < 4.9$ )
  - Tricky, since for  $|\eta| > 2.5$  we have no tracking information



- Use event topologies that are ideal for probing soft activity
  - Minimum bias: select as much physics as possible allows us to understand the huge level of 'pile-up' at the LHC
  - Di-jets: select events with a hard process, then measure the soft activity



(a) an interesting event in ATLAS - the underlying event as blue lines; hard scatter as red lines

### **Variables**



Here we use 2 variables to measure soft activity:

1. The mean  $\Sigma E_{_T}$  per unit  $\eta$ - $\Phi$  as a function of  $|\eta|$ 

$$\frac{1}{N_{\rm evt}} \frac{d\Sigma E_{\rm T}}{d\eta d\phi}$$

This is also called the  $^{\rm L}_{\rm T}$  density.

2. The  $\Sigma E_{_T}$  distribution in each bin of  $|\eta|$ 

$$\frac{1}{N_{\rm evt}} \frac{dN_{\rm evt}}{d\Sigma E_{\rm T}}$$





# **Minimum bias: selection criteria**



|          | Truth                                                                                                           | Reconstructed                                                  |
|----------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Event    | 2 central ( η  < 2.5) charged particles with pT > 250 MeV                                                       | Single arm trigger                                             |
|          |                                                                                                                 | Single primary vertex with two $p_{_{\rm T}}$ > 150 MeV tracks |
|          |                                                                                                                 | No pile-up vertices with > 5 associated tracks                 |
| Particle | Stable, lifetime > 10ps,<br>where<br> p <sub>charged</sub>   > 500 MeV and<br> p <sub>neutral</sub>   > 200 MeV | All EM-scale topological clusters with $ \eta  < 4.8$          |



Minimum bias trigger scintillators on Liquid Argon cryostat

### Minimum bias: selection criteria



|          | Truth                                                                                                  | Reconstructed                                                  |
|----------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Event    | 2 central ( η  < 2.5) charged particles with pT > 250 MeV                                              | Single arm trigger                                             |
|          |                                                                                                        | Single primary vertex with two $p_{_{\rm T}}$ > 150 MeV tracks |
|          |                                                                                                        | No pile-up vertices with > 5 associated tracks                 |
| Particle | Stable, lifetime > 10ps, where  p <sub>charged</sub>   > 500 MeV and  p <sub>neutral</sub>   > 200 MeV | All EM-scale topological clusters with $ \eta  < 4.8$          |



Minimum bias trigger scintillators on Liquid Argon cryostat

#### Summary:

- ensure a collision has occurred
- veto pile-up
- select all calorimeter clusters
- compare to truth particles that make it to the detector

### Minimum bias: selection criteria



|          | Truth                                                                                                        | Reconstructed                                                  |
|----------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Event    | 2 central ( η  < 2.5) charged particles with pT > 250 MeV                                                    | Single arm trigger                                             |
|          |                                                                                                              | Single primary vertex with two $p_{_{\rm T}}$ > 150 MeV tracks |
|          |                                                                                                              | No pile-up vertices with > 5 associated tracks                 |
| Particle | Stable, lifetime > 10ps, where<br> p <sub>charged</sub>   > 500 MeV and<br> p <sub>neutral</sub>   > 200 MeV | All EM-scale topological clusters with $ \eta  < 4.8$          |



Minimum bias trigger scintillators on Liquid Argon cryostat

#### Summary:

- ensure a collision has occurred
- veto pile-up
- select all calorimeter clusters
- compare to truth particles that make it to the detector

#### NB. pile-up

- For our MB results, peak  $\langle \mu \rangle = 0.007$
- Compare pile-up veto versus no veto
  - Difference ~0.1%
- Residual pile-up ~0.005%



# Di-jets: selection criteria



 Same as minimum bias, but ensure we have 2 balanced, back-to-back jets in the event



- This selection gives us a central di-jet topology
- To best analyse the effects of the underlying event (UE) in such a hard-scatter system, use Rick Field's phase space approach
  - Transverse region ( $60^{\circ} < |\Delta \Phi| < 120^{\circ}$ ) most sensitive to the UE

### **Some studies**



In order to analyse data that best reflects the physics we are sensitive to, numerous support studies were conducted:

- Include all clusters convenient cancellation when summing positive and negative energy noise clusters
- Truth particle selection by mapping truth particles onto their reconstructed counterparts, we determined what particles we are sensitive to at the detector level

With this knowledge, a Bayesian iterative unfolding of the data was performed to correct the clusters back to the particle level



# **Bayesian unfolding**



Using the Imagiro software package, an iterative Bayesian unfolding was performed on the  $\Sigma E_{\perp}$  distribution in each  $|\eta|$  bin

- Before unfolding the MC was re-weighted to the data, as it describes it very poorly in the forward region
- An example Pythia6 AMBT1 transfer matrix, for the highest ( $|\eta| > 4.0$ ) bin in minimum bias, is shown below
  - → Note the significant bin migrations



Taking the mean of the unfolded distribution and dividing by the  $|\eta|$  bin width returns the  $E_{\tau}$  density

## Systematic uncertainties



The 3 primary systematic effects in both analyses are:

- Difference between MC and data energy response
  - → Probe using  $\pi^0$  →  $\gamma\gamma$  candidates for the EM particles; E/p and test-beam results for the hadronic scale
- Model dependence when unfolding
  - Compare data unfolded using various MC models and tunes
- Effects of an incorrect detector material simulation
  - → Compare reconstructed MC between standard and extra-material ATLAS geometries

The di-jet analysis also counts the jet energy scale as an additional systematic error.

# Systematic uncertainties: minimum bias







Summary of systematic uncertainties in the minimum bias analysis:

Left:  $E_{\scriptscriptstyle T}$  density

All  $\Sigma E_{\tau}$  distributions and di-jet equivalents in backup.

### **Results: minimum bias**





 $N_{ch} \ge 2$ ,  $p_{\tau} \ge 250 \text{ MeV}$ 

p<sup>charged</sup> > 500 MeV, p<sup>neutral</sup> > 200 MeV

20

10

30

40

Py8 4C

50

 $\Sigma E_{T} (GeV)$ 

- Pythia6 AMBT1 does best in the central region
- All MCs under-predict the degree of activity in the forward region, with H++ 2.5.1 UE7-2 and Py8 4C performing best here
- Pythia6 DW gets the shape (ηdependence) best, but generally underpredicts in all bins



MC

### Results: central di-jets, transverse region





- Transverse region shows approximately 3 times more energy than the minimum bias
  - Expected, since hard scatter biases to head-on collisions – more parton-parton interactions
- Similar relation between data and MC
  - All models and tunes tend to underpredict the activity





### Conclusions



The  $\Sigma E_{\tau}$  distributions in different  $|\eta|$  bins as well as the  $E_{\tau}$  density, up to  $|\eta| < 4.8$ , has been measured in minimum bias and dijet events.

- Data used has been corrected for detector effects, back to the level of stable truth particles
- In general, all MC predictions underestimate the amount of activity in the forward region  $|\eta| > 2.4$ , for both minimum bias and di-jet
- We have also investigated the effect of PDF choice, which changes the relative forward to central energy
  - These results will be in the published note

This information is being used to tune the next batch of ATLAS MC.

- Both analyses also offer complete correlation tables, allowing tuners to use them concurrently
- We are on the way to a better understanding of forward physics at hadron colliders

Thanks for listening!



### **Systematic uncertainties: minimum bias**





Summary of systematic uncertainties in the minimum bias analysis:

Left:  $E_{T}$  density

Below:  $\Sigma E_{\tau}$ 



# Systematic uncertainties: di-jets





Summary of systematic uncertainties in the di-jet analysis:

Left:  $E_{\scriptscriptstyle T}$  density

Below:  $\Sigma E_{\tau}$ 

