Low Resistance Strip Sensors & Slim Edges Combined RD50 Experiment

CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia)
Contact person: Miguel Ullán

Outline

- Motivation
- Proposal
- Initial experiments
- PTP designs
- Final wafer design
- Slim edges experiment
- Status

Motivation

- In the scenario of a beam loss there is a large charge deposition in the sensor bulk and coupling capacitors can get damaged
- Punch-Through Protection (PTP) structures used at strip end to develop low impedance to the bias line and evacuate the charge

But...

- Measurements with a large charge injected by a laser pulse showed that the strips can still be damaged
 - The <u>implant resistance</u> effectively isolates the "far" end of the strip from the PT structure leading to the large voltages

C. Betancourt, et al. "Updates on Punch-through Protection" ATLAS Upgrade week, Oxford, March 31, 2011.

Proposed solution

- To reduce the resistance of the strips on the silicon sensor.
- Not possible to increase implant doping to significantly lower the resistance. Solid solubility limit of the dopant in silicon + practical technological limits (~ 1 x 10²⁰ cm⁻³)
- Alternative: deposition of Aluminum on top of the implant:

 $ightharpoonup R_{\Box}(Al) \sim 0.04 \,\Omega/\Box \implies 20 \,\Omega/cm$

Metal on implant

- Metal layer deposition on top of the implant before the coupling capacitance is defined.
 - ➤ Double-metal processing to form the coupling capacitor
 - ➤ A layer of high-quality dielectric.
 - Deposited on top of the first Aluminum (not grown)
 - Low temperature processing (not to degrade Al: T < 400 °C)
- MIM capacitors
 - ➤ Low temperature deposited isolation
 - PECVD (300-400 °C)
 - Risk of pinholes (Yield, Breakdown)
 - > 20 pF/cm → ~ 3000 Å
- Experiments performed at CNM to optimize the MIM cap.

Initial experiments

- 6 wafers batch of MIM capacitors
 - > Different sizes
 - C1: 1100 x 1100 μ m² = 1.20 mm²
 - C2: 600 x 600 μ m² = 0.36 mm²
 - C3: 300 x 300 μ m² = 0.09 mm²
 - **–** ...

(short strips $\sim 0.5 \text{ mm}^2$)

- Low-temperature deposited isolation
 - > PECVD (300-400 °C). 3 technological options:
 - Op1: 3000 Å of SiH₄-based silicon oxide (SiO₂) deposited in 2 steps ("Silane")
 - Op2: 3000 Å of TEOS-based oxide deposited in 2 steps ("Tetra-Etil Orto-Silicate")
 - Op3: 1200 Å + 1200 Å + 1200 Å of TEOS-based ox. $+ \text{Si}_3\text{N}_4 + \text{SiH}_4$ -based ox.
 - > Use of a multi-layer to avoid pinholes

MIM results

- All 3 options give good MIM capacitors
- Yield for the largest caps (> 1 mm²). Best for nitride

%	Silane	TEOS	Nitride
C1	81%	86%	94%

- $I_{LEAK} < 3 \text{ pA} @ 20 \text{ V}$ for the largest cap (C1) in all options
- Capacitance (pF/mm², pF/cm)

C1	Silane	TEOS	Nitride
pF/mm2	122	119.4	110.3
pF/cm	24.4	23.9	22.1

Breakdown Voltage (V)

V	Silane	TEOS	Nitride
C1	158	154	215

PTP design

- Reduce implant distance to bias ring to favor punch-through effect at low voltages
 - > Not tried before at CNM
 - ➤ Very dependent on surface effects (difficult to simulate)
- Poly resistor between the implant and bias rail ("transistor effect").
- Compromise between PT effect and early breakdown
- Design of experiments varying p, $s \Rightarrow d$

Test structures

• Test structure to measure potential along the implant under laser injection

• Test structures for more precise optimization of PTP geometry

Final wafer design

- 10 mini ATLAS-barrel-like sensors
 - ➤ 64 channels, ~2.3 mm long strips
 - ➤ With a metal strip on top of the implant and connected to it to reduce R_{strip}
 - Each sensor with a different PTP geometry (with poly bridge)
- 10 extra standard sensors for reference (no metal in implant)
 - ➤ Identical to the ones above but without metal strip
- Extra test structures
 - ➤ Precise PTP optimization (+DoE)
 - > Accurate measurement of potential grading along the strip
- Deep trenches designed at different distances from bias ring to experiment on slim edges
- Some extra designs to try full 4-edges cutting of sensors with deep trenches

Final wafer design

Slim Edges experiment

- 3 extra wafers in the batch for Slim Edges experiment
- New mask designed for Aluminum removal in the back side to act as mask for DRIE
- Si deep etch from the back
- Trenches 30 um wide and:
 - > Opt 1: 10 μm deep etch
 - \triangleright Opt 2: ~250-280 µm deep etch
 - ➤ Opt 3: XeF₂ etch at NRL
- ALD deposition of Al₂O₃ after etching to passivate surface

Trench design

Several trench experiments:

- ➤ 2 guard rings sensors and trench cut close to the las GR
- > Cut at different GR
- > 2 sides cut
- > 4 sides cut

Status

- LowRstrip wafer design finished
- 1 additional mask designed for deep trenches for Slim edges experiments
- Masks fabricated
- Run just started in CNM clean room

- Ready to bill RD50 for the funding (15000 €)
 - > order pending, quotation to be issued by CNM
- Pending agreement with Slim Edges Common Project to contribute for the extra costs for 3 extra wafers with deep trenches and Al₂O₃ passivation

Thank you