

Shallow levels analysis in ntype MCZ Si detectors after mixed irradiation

M. Bruzzi¹, R. Mori¹, M. Scaringella¹, Z. Li²

¹INFN and University of Florence, Florence (Italy)

²BNL, Upton New York (US)

Motivation

- Neutron irradiation introduce a large number of deep acceptors, increased by reverse annealing.
- Gamma irradiation could compensate deep acceptor space charge enhancing shallow donor introduction [see talk Z. Li].
- TSC in the low T range to determine concentration of shallow donors in both neutrons and mixed (neutrons + gammas) irradiated samples.

Irradiated detectors

#	1480-5	1480-13	1480-16
	(n+Υ)	(n)	(2n+Ƴ)
Si Material	n-type MCZ	n-type MCZ	n-type MCZ
n _{eq} /cm ²)	1.5x10 ¹⁴	1.5x10 ¹⁴	3.0x10 ¹⁴
γ (Mrad)	500	0	500

N_{eff} data after irradiation and RT annealing of the three detectors, from [*]

[*] Z. Li E. Verbitskaya, W. Chen, V. Eremin, R. Gul, J. Härkönen, M. Hoeferkamp, J. Kierstead, J. Metcalfe, S. Seidel, Complete suppression of reverse annealing of neutron radiation damage during active gamma irradiation in MCZ Si detectors, in press.

TSC Analysis

- TSC with optimized priming procedure [*]: 5min of pulsed IR in forward voltage (100V) at the lowest temperature and temperature scan in the ranges [5-80]K at low (0.05-0.1 K/s) heating rate with reverse voltage applied.
- Poole-Frenkel analysis to determine charge state of defects
- Decayed TSC to resolve composed TSC peaks (Saw tooth temperature scan with reverse voltage applied).

[*] M. Bruzzi, R. Mori, D. Menichelli, M. Scaringella, Optimization of the priming procedure for Thermally Stimulated Currents with heavily irradiated silicon detectors, Proceedings of Science PoS (2009)

Charge vs bias plot *

 To determine full depletion voltage and effective doping at low temperature:

- To evaluate trap concentration from the charge of the saturated peak
- To compare N_{eff} and N_t

[*] E. Borchi, M. Bruzzi, Z. Li S. Pirollo, J. Phys. D: App. Phys. 33, (2000) 299-304

Shallow Peaks in the 5-20K range

In the lowest temperature range we observe P and B emissions at approx. 12K and 14K.

Poole-Frenkel effect proofs their charge state after the emission.

M. Bruzzi, R. Mori, M. Scaringella, Z. Li, Shallow levels analysis in n-type MCZ Si detectors after mixed irradiation, RD50 workshop, 05/30-06/01 Bari (Italy)

Shallow Peaks in the 20-80K range

Poole-Frenkel effect observed only on level at 30K: charged defect as in ref. [*]

[*] M. Bruzzi et al. NIM A 552 20-26 (2005)

Charge of 30K peak vs V_{bias} to determine N_t

- N_{eff} increases with n fluence;
- N_t of peak at 30K increases with n fluence; it decreases with gamma dose for same n fluence.

Preliminary

Sample	Fluence N _{eq} /cm ²	Dose Mrad	V _{fd} [V]	N _{eff} [cm ⁻³]	N _t [cm ⁻³]
1480-13	1.5x10 ¹⁴	0	157	1.3e12	9.9e11
1480-5	1.5x10 ¹⁴	500	215	1.8e12	5.9e11
1480-16	3x10 ¹⁴	500	300	2.6e12	1.5e12

In progress:

Charge of 12K peak vs V_{bias} to determine N_t

- -N_{eff} increases with n fluence;
- -N_t of peak at 12K increases with n fluence
- 1480-13 still under test

Preliminary

Sample	f n _{eq} /cm ²	Dose MRad	V _{fd} [V]	N _{eff} [cm ⁻³]	N _t [cm ⁻³]
1480-5	1.5x10 ¹⁴	500	66	5.7e11	1.0e11
1480-16	3x10 ¹⁴	500	126	1.1e12	2.1e11

Conclusions

We investigated a possible enhancement of radiation induced shallow donors due to gamma irradiation in neutron irradiated detectors → TSC have been performed in the range [5,80]K on neutron and mixed irradiated detectors.

We observed main radiation induced shallow donor candidates at 12K and 30K: their concentration after neutron irradiation increased. Work in progress: analysis of their dependence on gammas.

- -N_{eff} in the low temperature range quite different to the one in the operative temperature.
- Need to look for positive space charge compensation also in the deep level range.