TCT measurements with strip detectors

<u>Igor Mandić</u>¹, Vladimir Cindro¹, Andrej Gorišek¹, Gregor Kramberger¹, Marko Milovanović¹, Marko Mikuž^{1,2}, Marko Zavrtanik¹

¹Jožef Stefan Institute, Ljubljana, Slovenia ² Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

<u>20th RD50 Workshop, Bari, 30.5. – 1.6</u>

Introduction:

- TCT with focused IR laser light Position Sensitive TCT
 - see the talk by G. Kramberger at RD50 meeting in Prague 2006: http://indico.cern.ch/getFile.py/access?contribId=41&sessionId=10&resId=1&materiaIId=slides&confId=1242
- focused IR laser light (λ = 1060 nm) directed on the surface of strip detectors
- Hamamatsu ATLAS07 mini strip detectors irradiated with neutrons in Ljubljana
- p-type, FZ, 320 µm thick, 1x1 cm², produced by Hamamatsu
 - strip pitch: 74.5 µm
 - implant width: 16 µm
 - metal width: 22 µm
 - all zone 3
- detectors irradiated to $2\cdot10^{14}$, $5\cdot10^{14}$, $1\cdot10^{15}$ and $5\cdot10^{15}$ n/cm²
- 2.10¹⁴ annealed 80 minutes, others 84 hours at 60 C!!
- measurements made at T = 20 C

Motivation: check the uniformitiy of response at high bias voltages

Metal: connected to same potential (HV supply)!
→ weighting field as when connected to multi-channel readout chip!

Detector before irradiation

• scan laser spot across the the surface, step 2.5 μm

Examples of signals induced on readout strip by laser beam at different locations:

t[ns]

5

Charge vs. x for irradiated detectors

In irradiated detectors non zero signal expected on neighbour strip

- G. Kramberger et al., *Influence of trapping on silicon micro-strip design and performance*, IEEE TNS, Vol 49 (2002) p1717
- G. Kramberger, D. Contarato, *Simulation of signal in irradiated silicon pixel detectors,* NIMA511 (2003) p 82

Induced signal from MIP impact on neighbour strip:

→ Because of trapping integrals of induced signal not 0!

- examples of events measured with SCT128, 90 Sr, $\Phi = 5e15$, Bias = 1400 V
 - → large positive signals accompanied by negative signals on neighbour channels

9

• pulses for laser spot between the metal and the peak

at ~ 162 µm

 \rightarrow second peak appears at ~162 um, laser spot ~ 6 µm away from the edge of metal

t[ns] 11

Charge vs. bias voltage measured at different impact point x

- each colour different x: black 168 μm, blue 188 μm (for 1e15)
 - \rightarrow steep rise of collected charge with bias voltage at peak location (168 um) for 1e15

• other fluences

Charge (arb.)

Effect of non-uniform response on tracking efficiency

binary electronics: it depends on the threshold if non-uniformity affects the efficiency
 → more non-uniform after 1e15 than 5e15

Summary

- preliminary results of measurements with focused IR laser beam directed on the surface of heavily irradiated strip detectors
- signal of opposite polarity induced on the neighbor strip
 - → expected because of trapping
 - \rightarrow observed also in events measured with SCT128 chip (⁹⁰Sr)
- multiplication seen in TCT signals: second peak in induced current
 → takes some time that electrons reach the region of high field
 - \rightarrow movement of charge created in multiplication is seen as the second peak
- significant multiplication seen in detector irradiated to 10¹⁵ n/cm² in narrow region
 → narrower than in the detector irradiated to 5.10¹⁵ n/cm²
- response of detectors across the surface
 - \rightarrow more uniform for detector irradiated to 5.10¹⁵ n/cm² than to 10¹⁵ n/cm²

Sum of red and blue

x [µ m]

 \rightarrow expected because of trapping

• pulse on neighbor strip changes polarity at high fluence \rightarrow need simulation to understand. 150 200 250 300 0.5 t[ns] 0.4 Bias = 1000 V 0.3 0.2 0.1 0 -0.1 $\begin{array}{l} \Phi_{\rm eq} = 5.0 {\rm x10^{15}} \ {\rm n/cm^2} \\ \Phi_{\rm eq} = 1.0 {\rm x10^{15}} \ {\rm n/cm^2} \\ \Phi_{\rm eq} = 5.0 {\rm x10^{14}} \ {\rm n/cm^2} \\ \Phi_{\rm eq} = 2.0 {\rm x10^{14}} \ {\rm n/cm^2} \end{array}$ -0.2 -0.3 -0.4 -0.5 0.5 1.5 2 2.5 3 3.5 1 4 4.5 5 I [V/50Ω]

35

Compare SCT128 and TCT

- SCT128: charge measured with ⁹⁰Sr
- laser: average across high signal region

 \rightarrow laser \rightarrow only shapes of curves can be compared, not values of charge

→ shape for 5e15 (blue) for laser and SCT128 somewhat different, other look similar