Thin Irradiated Strip and Pixel Detectors

Philipp Weigell^a, L. Andricek^{a,b}, A. Macchiolo^a, H.-G. Moser^{a,b}, R. Nisius^a and R.-H. Richter^{a,b}

^aMax-Planck-Institut für Physik, ^bMax-Planck-Institut Halbleiterlabor

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) In collaboration with Fraunhofer

© Fraunhofer EMFT / Bernd Mueller

Thin Pixel Production at MPP/HLL

- 4 wafers of 150 µm and 4 wafers of 75 µm active thickness (on handle wafer)
- Proton & neutron irradiations with fluences up to $10^{16} n_{eq/cm^2}$ at
 - KIT (25 MeV protons)
 - CERN PS (24 GeV protons)
 - Lubljana (reactor neutrons)

edgeTCT Measurements

EdgeTCT Setup & Devices

Measurements with edgeTCT setup in Ljubljana were performed. Aim: Learn more about the charge collection behaviour for these thin devices.

Used Sensors: Strip sensors with 75 μ m & 150 μ m active thickness, irradiated with reactor neutrons to $\Phi = (0, 5, 10) \cdot 10^{15} n_{eq}/cm^2$.

- Thanks to: Gregor K. and Marko Milovanovic

EdgeTCT Measurements (5e15)

• No clear multiplication signal

EdgeTCT Measurements (5e15)

• No clear multiplication signal

MPP/HLL – $\Phi_{eq} = 5 \cdot 10^{15} \text{ n/cm}^2$, $t_{ann} = 0 \div 20480 \text{min}$ (150 µm)

Thanks to: Philipp Weigell and A. Macchiolo, MPI

- Initial V_{fd}≈82V. п
- Estimated V_{fd} after irradiation and 80min of annealing: ~1500V.
- Charge multiplication contribution to CC ~15x after 20480min! (the detector п still under study - currently annealing to 40960min!)
- Charge multiplication noticed even at 250V after the final annealing step!

MPP/HLL – $\Phi_{eq} = 5 \cdot 10^{15} \text{ n/cm}^2$, $t_{ann} = 0 \div 20480 \text{min}$ (150 µm)

Thanks to: Philipp Weigell and A. Macchiolo, MPI

M. Milovanović, 7th Trento Workshop, Ljubljana, SI, 29.2. - 2.3.2012

17

EdgeTCT Measurements (1e16)

- 150 μm: Depleting from front side. Above 700 V <Q> almost homogeneous.
- 75 μm: From start homogeneous (→ simulation)
- Increase of slope above 700 V for 75 μm thick sample, reflected in IV

EdgeTCT Simulation (Plan)

Plan: Simulate the edgeTCT measurements

- Simulation-packet: TOSCA
- 2-Dimensional
- Implantation profile simulated with DIOS
- Solving the coupled differential system of the Poisson equation and the continuity equations for electrons and holes
- Possibility to create a spatially confined charge cloud (Gaussian profiles)

At the moment still simulating the not irradiated devices—stay tuned.

SLID Module Measurements

Our Pixel Module Concept

Four new technologies

- N-in-p bulk material
 - Cost reduction
- Thin sensors (MPP-HLL process)
 - Higher signals after irradiation
 - Less multiple scattering
 - Lower occupancy
 - Better resolution
- SLID: Solid Liquid Inter-Diffusion
 - Allows for vertical integration/separation of analogue and digital parts (with ICV))
- ICV: Inter-Chip-Vias
 - More compact: "balcony" for signal-extraction not needed
 - Enlargement of active area

SLID: Solid Liquid Inter-Diffusion

Alternative to bump bonding

Pros

- Allows for vertical integration (T_{melt}).
- Arbitrary geometries possible and smaller pitches.
- Less process steps \rightarrow lower cost.
- Wafer to wafer and chip to wafer possible.
- Strength: 0.01 N per connection

Cons

- Planarity of 1 μ m needed.
- No rework possible
- Chip-to-chip not possible at the moment
- Homogeneous pressure needed

SLID: Solid Liquid Inter-Diffusion

Alternative to bump bonding

Pros

- Allows for vertical integration (T_{melt}).
- Arbitrary geometries possible and smaller pitches.
- Less process steps \rightarrow lower cost.
- Wafer to wafer and chip to wafer possible.
- Strength: 0.01 N per connection

Cons

- Planarity of 1 μ m needed.
- No rework possible
- Chip-to-chip not possible at the moment
- Homogeneous pressure needed

- Six assemblies with 75 μm thick sensors built.
- ⁹⁰Sr and ²⁴¹Am sources are used to to determine the charge collection.
- External trigger via scintillator (for ⁹⁰Sr) and internal chip trigger (for ²⁴¹Am).

Charge Collection after Irradiation

- Irradiations
 - Ljubljana: $(2 \& 5) \cdot 10^{15} n_{eq}/cm^2$ • KIT: $6 \cdot 10^{14} n_{eq}/cm^2$
- Tuned threshold of (2500–3500) e, Noise of 170 e
- Full charge recovered for all fluences
- All channels conencted after irradiation, thermal cycles

Entries 002 ≩150 $\cdot 10^{15} n_{eq}/cm^2$ 150 100 100 50 50 5 10 15 Column CCE CCE 0.8 0.6 $p, \Phi = 6x10^{14} n_{eq}/cm^2$ 0.4 $m, \Phi = 2 \times 10^{15} n_{eq}/cm^2$ 0.2 $n, \Phi = 5 \times 10^{15} n_{eq}/cm^2$ 100 200 300 400500 Bias Voltage [V]

Hitmap

Pixel vs. Strip Measurements

For 75 μ m at 5 · 10¹⁵ n_{eq}/cm² data obtained with both methods is available \rightarrow very good agreement in the shape.

No absolute scale known for edgeTCT measurements \rightarrow rescaled for comparison. Plan: Send pixel sensor for irradiation to $10^{16} n_{eg}/cm^2$.

- $\bullet\,$ Irradiated: KIT $6\cdot 10^{14}\,n_{neq}/cm^2.$
- Challenge: FE-I3 was not designed for low thresholds! Solution: FE-I4 (\rightarrow See Anna's talk)
- Two thresholds & voltages: Clearly seen in the data.
- Overall efficiency for second tuning at 95 %. Main effect high threshold. Central region has higher efficiency (next slide).
- No improvement due to 15°, since longer trajectory is compensated by more pixels below threshold.

Beam Test Measurements - Explanations

- Lower efficiency in the punch through and corner regions due to implant structure.
- Efficiency in the main pixel region ~97.2 % MPV for the charge 3.8 ke, threshold of 3.3 ke.
- Tuning to lower thresholds not possible due to disconnected channels

Summary & Plans

Summary

- Charge collection measurements for 75 μ m and 150 μ m thick sensors irradiated up to $10^{16} n_{eq}/cm^2$.
 - 75 μm and $5\cdot 10^{15}\,n_{eq}/cm^2$
 - Saturation above $\sim 300 V$
 - Absolute measurement indicates that CCE after saturation is ~ 1
 - No clear sign of multiplication below 800 V
 - $75 \,\mu\text{m}$ and $10^{16} \,n_{eq}/\text{cm}^2$
 - Rise of signal above 700 V
 - 150 µm
 - No saturation found up to 1000 V
- Efficiency challenged by high thresholds of FE-I3 \rightarrow solved by FE-I4

Plans

- Extend beam test measurements and analysis
- Simulate edgeTCT measurements