20th RD50 Workshop, Bari, 30th May – 1st June 2012

Evaluation of electron and hole detrapping in irradiated silicon sensors

<u>Markus Gabrysch</u>¹, Mara Bruzzi², Michael Moll¹, Nicola Pacifico³, Irena Dolenc Kittelmann⁴, Marcos Fernandez Garcia⁵

¹ PH-DT-TP, CERN (CH)

² INFN and University of Florence (IT)

³ Université Montpellier II (FR)

⁴ Ohio State University (US)

⁵ Universidad de Cantabria (ES)

20th RD50 Workshop, Bari, 30th May - 1st June 2012

Outline

- 1. Motivation/Aim
- 2. TCT-DLTS setup
- 3. Investigated diodes
- 4. Measurement principle
- 5. First measurements
- 6. Conclusions

Motivation/Aim

- Knowledge of energy levels and cross-sections of de-trapping centres is crucial for defect characterization
- These parameters can be determined by investigating the temperature dependence of the time-constant τ for de-trapping
- For defects deep in the bandgap the de-trapping happens on a µs-timescale (around RT)

- Red laser illumination with two different pulse width (80ps or 2µs)
- T-Bias (20kHz-10GHz, constant HV < 200V) used
- Amplifier was not needed for 2µs illumination
- Temperature controlled (flushed with dry air for T < 10°C)

Investigated diodes

Name	Sample A	Sample B	Sample C	Sample D
	(HIP_05_C16)	(HIP-MCz-01-n-23)	(FZ_2328-11_A)	(FZ_2852-23)
Material	HIP	HIP	Micron	Micron
	FZ n-type	MCz n-type	FZ p-type	FZ n-type
	300µm	300µm	300µm	300µm
Irradiation		24GeV protons $\Phi = 9 \times 10^{14} \text{ cm}^{-2}$	24GeV protons $\Phi = 5 \times 10^{14} \text{ cm}^{-2}$	24GeV protons $\Phi = 5 \times 10^{14} \text{ cm}^{-2}$
Annealing		4min at 80°C	80min at 60°C	80min at 60°C
Illumination	660nm (2µs)	660nm (80ps)	660nm (2µs)	660nm (2µs)
	front	front/back	front	front

- TCT signals have been measured with long integration times (up to 50µs)
- Temperature range investigated: ca. 10 50°C
- Stability of signal confirmed by recording 10 times the (same) waveform which itself is an average of 1024 shots

- TCT signals have been measured with long integration times (up to 50µs)
- Temperature range investigated: ca. 10 50°C
- Stability of signal confirmed by recording 10 times the (same) waveform which itself is an average of 1024 shots

Zoomed:

before: without randomized trigger and 80ps pulse width

Signal Components

• For irradiated detectors we expect the integrated current to have the form:

$$S(t) = A + \sum_{i} N_{i} (1 - \exp(-t / \tau_{i}))$$

Due to charge collected during carrier drift

• In the case of two time-constants:

$$S(t) = A + N_1 (1 - \exp(-t/\tau_1)) + N_2 (1 - \exp(-t/\tau_2))$$

with free parameters *A*, N_1 , N_2 , τ_1 and τ_2 . The first ones should be temperature independent.

Parameter extraction – Alternative 1: τ -fitting

• The detrapping time constant is linked to defect parameters by:

 $\tau_{h} = \frac{1}{\sigma_{h} v_{h} N_{v}} \exp\left(\frac{E_{t}}{k_{B}T}\right) \qquad \text{absolute value of the energy level calculated from valence band maximum}$

 $\sigma_{\rm h}$... hole detrapping cross-section

 v_h ... thermal hole velocity

 $N_{\rm V}$... effective density of states in valence band maximum

• Looking explicitly on T-dependence:

$$v_h N_V = \sqrt{\frac{3k_BT}{m_h}} \frac{1}{4} \left(\frac{2m_h k_BT}{\pi \hbar^2}\right)^{3/2} \equiv \gamma_h T^2$$

• And we can analyse data in an Arrhenius plot:

$$\ln(\tau_h T^2) = \frac{E_t}{k_B T} - \ln(\sigma_h \gamma_h) \qquad \Rightarrow \text{ read off } E_t \text{ and } \sigma_h \text{ from slope and intersect}$$

Parameter extraction – Alternative 2: DLTS Scan

- In DLTS (Deep-Level Transient Spectroscopy) we look at the difference of signals measured at two different times t_1 and t_2 : $\Delta S = S(t_1) S(t_2)$ during a temperature scan.
- Temperature independent contributions cancel out: $\Delta S(T) \propto \left[\exp(-t_1 / \tau_d(T)) - \exp(-t_2 / \tau_d(T)) \right]$
- The function ∆S(T) goes to zero for high and low temperatures but peaks at intermediate temperatures. The time constant at peak temperature can be determined as a function of t₁ and t₂ as:

$$\tau(T_{S\max}) = \frac{t_1 - t_2}{\ln(t_2 / t_1)}$$

• These data pairs can be analysed in an Arrhenius plot

Parameter extraction – Alternative 2: DLTS Scan

First measurements

Integrated current for unirradiated diode (Sample A)

Current drops to zero "instantly" after illumination

Integrated current for unirradiated diode (Sample A)

No clear time-constant and no temperature trend observable \rightarrow small rise most likely due to imperfect offset correction

Integrated hole current for irradiated MCz diode (Sample B)

Sum of two exponentials used to fit the data: one faster τ_1 (T-independent) and one slower $\tau_2 = \tau_d$ (trapping) Arrhenius plot for hole transport MCz diode (Sample B)

Data points correspond to time-constants extracted from fits to integrals S(t)

Arrhenius plot for hole transport FZ diode (Sample C)

Time-constants were not extracted well, since fitting [exp(.)+exp(.)] is tricky ...

21

Arrhenius plot for electron transport FZ diode (Sample D)

DLTS Scan for electron transport FZ diode (Sample D)

Conclusion

- Setup improved to guarantee reproducibility even for 50µs integration time
- Important changes:
 - Randomized triggering
 - 2µs instead of 80ps illumination to obtain large enough signal even without current amplifier
- Observed $\tau_e = 2-40 \mu s$ (for 10-50°C) and $\tau_h = 1-10 \mu s$ (for 10-50°C)
- Still more improvements are necessary ...
 - to extract time constants from S(t) or I(t).
 - to minimize leakage current but still to deplete the same volume for each temperature
 - ...

Thanks for your attention!