

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Recent results on radiation damage in the LHCb silicon tracking system

Agnieszka Obłąkowska-Mucha

on behalf of VELO & Silicon Tracker

20th RD50 Workshop (Bari, Italy) 30th of May 2012

LHCb spectrometer

LHCb spectrometersilicon tracking systems

Mobile: opening every fill and centering on the beam with self measured vertices

88 silicon sensors 300 μ m, n⁺n and n on p

double metal layer

Cooled: by evaporative CO_2 system, operating in vacuum

VELO fully open

VELO fully closed

(stable beam)

VELO goals

Tracking:

► high precision measurement of trajectories close to the interaction point

Vertexing:

- production and decay vertices of b and c hadrons,
- accurate measurement of decay lifetimes

Tagging:

impact parameters

Trigger:

► VELO's input is absolutely vital for physics, HLT (high level trigger) relies on all listed quantities

- ▶ Hit resolution 4µm
- ► momentum resolution Δp/p=0.4%-0.55%
- ► PV resolution 13µm
- ► IP resolution 13µm for high
- transverse momentum tracks

Proper time resolution ~50 fs

LHCb VELO irradiation at 14 TeV

VELO operates in an harsh and non uniform radiation environment.

- ► At the nominal LHC energy VELO accumulates maximum of 0.5×10¹⁴ n_{eq}/cm².
- ► The detector was designed to sustain 3 years of nominal data taking.
- ► Operational temperature : -8 0°C

Radiation effects

BULK damage due to generation of defects (additional generation and recombination centers) induces:

- Change of depletion voltage (cooling)
- Increase of leakage current (cooling)

Decrease of charge collection efficiency

SURFACE damage caused by scratches, surface currents in guard rings, edge effects,...

Leakage current in silicon evolution is a well predicted quantity – its change is a way to track the accumulate fluence.

The effects are counted for the integrated luminosity of 1fb⁻¹ and compared with the measured luminosity and temperature in LHCb.

Leakage current measurement

Current = Bulk current + Surface current

BULK current:

- increases with fluence
- exponential dependence on temperature
- ► saturates in HV (V_{dep})

SURFACE:

- decreases with fluence
- weak temperature dependence
- HV dependent

In order to follow radiation damage we need to disentangle both of them:

temperature scans (IT - current – temperature) curent – voltage scans (IV)

LHCb-PUB-2011-020 LHCb-PUB-2011-021 Analysis of P.Collins and VELO group

Monitoring radiation damage

Available data set:

	HV	Lumi [pb ⁻¹]
IV scans (2009)	100 V	0
IT scans	100-150 V	480, 821, 1000
IV scans	0 -150- 0 V	weekly

IV scans

taken weekly, no beam, results presented in the monitoring software (GUI),

IT scans:

temperature ramped up & down in range between -30 and 5°C with the step of 2°C, HV constant 100 or150V,

work on generic analysis software (taken by Krakow group) in progress,

IT - control screen shots

2 NTC to monitor temperature on hybrid

Typical fits to the IT data

exponential formula (bulk contribution) + constant term (surface current)

$$I(T) \propto T^2 \exp\left(\frac{-E_g}{2kT}\right)$$

The most recent IT scan

Lumi=1204 pb-1

Bulk & surface currents

Bulk current dominated sensor

Surface current dominated sensorannealing

Effective energy gap

The significant change in temperature for the fit allows to determine the Eq

Data set	Lumi [pb-1]	E _g [eV]
IV scans	0	0.69±0.08
IT scan	821	1.13± 0.04
IT scan	1204	1.14 ±0.04 eV

E_q for each sensor:

Change in bulk current

Currents are corrected to the same temperature (21°C and 0°C) for all sensors:

$$I(T_{ref}) = I(T) \left(\frac{T_{ref}}{T}\right)^{2} \exp\left(-\frac{E_{g}}{2k} \left[\frac{1}{T_{ref}} - \frac{1}{T}\right]\right)$$

T[°C]	Lumi [pb ⁻¹]	ΔΙ
21	821	0.16÷0.44 mA
-8		9÷26 μΑ

ΔI dependence on z sensor position:

IV scans

- Surface currents ohmic behaviour.
- Bulk current saturates with HV.
- Current-voltage scans are taken every week.
- Periodic voltage scans from 0 to 150V and back down.
- ► Each measurement recorded with NTC temperature value.
- Monitoring in GUI.

Current(µA)

Current-voltage fits

Two main types of current behavior:

Bulk current dominated sensor before and after irradiation.
Current increses and saturates (59 sensors)

Surface current dominated sensorohmic component. Slopes decrease after irradiation (22 sensors)

Current vs Time

Bulk current sensors

Simple requirements – slope is flat before and after irradiation:

Comparison with fluence prediction

Simulated data – correction for path length in silicon

Leakage currents prediction

Leakage current increase is consistient with expectation and its change is caused mainly by charged particles directly produces in collisions.

Good agreement – understanding of fluence modeling .

Silicon Tracking system

- Silicon Tracker (ST) comprises two detectors:
 Tracer Turiscencis (Trigger Tracker)
 Inner Tracker
- Four stations:TT between VELO and magnet3 downstream tracking stations

 Hits combined with information from VELO used to reconstruct particle tracks – measure P

Key properties:

p+-on-n non-oxygenated 500 μm – TT 320-410 μm – IT No second metal layer

Tracker Turiscencis

Tracker Turicensis

- ► S
- ► Four planes (0°, +5°, -5°, 0°).
- Pitch: 183 μm; Thickness: 500 μm.
- ► Long readout strips (up to 37 cm).

143360 readout channels.

- ► Total Silicon area is 8 m².

 Covers full acceptance before magnet.
- ► Cooling plant at 0°C: sensors ≈ 8°C.

Inner tracker

► Three stations in z.

Four boxes in each station.

Four planes (0°, +5°, -5°, 0°)

Pitch: 198 µm

Thickness: 320 or 410µm

129024 readout channels.

► Total Silicon area is 4.2 m².

Covers region around beam with highest flux.

► Cooling plant at 0°C: sensors≈10°C.

Monitoring radiation damage in the ST

Expected Radiation Dose (10 years):

IT: 5×10^{13} 1-MeV neutron equivalent.

TT: 8 x 10¹³ 1-MeV neutron equivalent.

Monitor change in leakage currents.

Plot the peak current in a fill vs time.

Expected changed calculated using (old) FLUKA simulation.

IT: $\Delta I(10^{\circ}C) = 0.103 (0.031) \,\mu\text{A/pb}^{-1}$.

TT: $\Delta I(8^{\circ}C) = 0.065 \,\mu\text{A/pb}^{-1}$.

Monitor changes in depletion voltage

Charge Collection Efficiency.

Expect type inversion after 1-2 years.

Current evolution in TT

Leakage current evolution in TT

- Sensors closest to the beam.
- Colour indicates layer.

- Results within expectations.
- Need to include annealing in predictions.

Current evolution in IT

IT HV-vs-Depletion Voltage

plot V_{dep} from CCE-scan versus V_{de} from capacitance measurement during production

Analysis still on-going: results here are extremely preliminary

Final remarks

- ► Two monitoring methods: IV and IT scans provide information on bulk/surface component of leakage current.
- ► Temperature scans are more accurate and allow to measure E_q.
- VELO data used for measuring fluence and ageing.

What will happen next?

Before the scheduled upgrade (2018-19) VELO will collect ~9 fb⁻¹. At 7 mm from beam sensor accumulate 8×10^{15} n_{eq}/cm² for 100fb⁻¹.

In the absence of accidents and assuming the upgrade keeps to schedule, we would expect not to insert the replacement but change from the current VELO to the upgrade.