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- Context of the SPL 
- =1 cryo-module in a possible SPL layout 
• =1 cavity layout 
• 2K Heat loads 
• Segmented configuration, dimensions 

- Goal & motivations of the short cryomodule 
• Goal & motivations 
• Cryostat specific main objectives 

- Cryogenic aspects 
• Short cryomodule cryogenic scheme 
• Cooling lines 
• Filling lines 
• Coupler cooling lines 

- Cavity Supporting System 
• The supporting system concept 
• The vacuum vessel/coupler interface 
• The inter-cavity supporting system 

- Short cryomodule layout 
- Vacuum vessel design 
• Constraints 
• Requirements 
• Vacuum vessels and tooling concepts 
• Cold magnetic shielding 
• Thermal shielding 

- Summary 
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CERN’s expected new LHC injection line (former plans) 

LP-SPL: Low Power-Superconducting Proton Linac (4 GeV) 
PS2:   High Energy PS (~ 5 to 50 GeV – 0.3 Hz) 
sLHC:  “Super-luminosity” LHC (up to 1035 cm-2s-1) 
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General orientation: 

Focus on R&D for key technologies for a high-intensity proton source (HP SPL) for a 
neutrino facility 

In particular, for the cryo-module development: 

• Development, construction and test of β=1 elliptical cavities, 704 MHz 

• Development, construction and test of RF couplers 

• Test of a string of 4 β=1 cavities in a machine-type configuration 

 This program calls for the design and construction of a short cryo-module for 
testing purposes 

CERN’s new scientific strategy: R&D for a High Power SPL (HP-SPL) 
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The He vessel includes specific interfaces for the cryomodule 
integration: 

• Inter-cavity supports 

• 1 cryogenic feed 

•  External magnetic shielding via cryoperm™ (not shown)  

• Tooling (in/outside the clean room) 

 

 

Requirement Value 

β 1 

Frequency 704.4 MHz 

Qo 5 x 109 

Gradient 25 MV/m 

Operat. T 2 K 

=1 cavity layout 

CEA cavity design 

Cryogenic connection 

Reserve port 

Stainless steel He vessel 

Tooling interface Tooling interfaces 

Tooling interface 
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2K Heat Loads (per =1 cavity) 
Operating condition Value 

Beam current/pulse lenght 40 mA/0.4 ms beam pulse  20 mA/0.8 ms beam pulse  

cryo duty cycle 4.11% 8.22% 

quality factor 10 x 109 5 x 109 

accelerating field 25 MV/m 25 MV/m 

Source of Heat Load Heat Load @ 2K (per cavity) 

Beam current/pulse lenght 40 mA/0.4 ms beam pulse  20 mA/0.8 ms beam pulse  

dynamic heat load per cavity 5.1 W 20.4 W 

static losses <1 W (tbc) ~ 1 W (tbc) 

power coupler loss at 2 K <0.2 W <0.2 W 

HOM loss in cavity at 2 K <1 <3 W 

HOM coupler loss at 2 K (per 
coupl.) 

<0.2 W <0.2 W 

beam loss 1 W 1 W 

Total @ 2 K 8.5 W 25.8 W 



7 

« Segmented » architecture with warm quads and a cryo distribution line  

Warm 
quadrupole 

Cryogenic Distribution Line 

Jumper =0.65 cryomodule 
(3 cavities) 

=1 cryomodule 
(8 cavities) 

• 60 β=0.65 cavities in 20 cryomodules 
• 184 β=1 cavities in 23 cryomodules 
• SRF linac  500 m long 

Heat loads for SPL high- module 

Static load estimated to 2.5 % of 
total load. 
Assessment of static load is of 
minor importance at this state 
(end of conceptual design) 
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 Mechanical design 
 Cryogenics (Heat loads, T and P profiles, segmented machine layout) 
 Designed for 0%-2% test (for 1.7% expected tunnel slope) 

 

The short cryomodule design strategy 

4 cavities less 

• Test-bench for RF testing on a multi-cavity assembly driven by a single or multiple RF 
source(s) 

• Enable RF testing of cavities in horizontal position, housed in machine-type 
configuration 

• Validate the design of critical components like RF couplers, tuners,  HOM couplers in 
their real operating environment  short cryomodule design 

Goal 
Design and construct a ½-lenght cryomodule  
• for the test of 4 β=1 cavities (instead of 8 in a machine type cryomodule)  
 
 
 
• in conditions as close as possible to a machine-type cryomodule 
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Cryostat specific main objectives 

Learning of the critical assembly phases: 

• From the assembly of cavities in the clean room to the a cryomodule test 

• Alignment/assembly procedure 

Proof of concept of  “2-in-1” RF coupler/cavity supporting: 

• Fully integrated RF coupler: assembly constraints 

• Active cooling effect on cavity alignment  

Operation issues:  

• Cool-down/warm-up transients, thermo-mechanics, heat loads 

• Alignment/position stability of cavities 

• Cryogenic operations (He filling, level controls, RF coupler support tube cooling) 

 

Cryostat and tooling overview 

Technical solutions focus on the ½-lentgh cryomodule  
But technical solutions are developed for the full length cryomodule 
(Specifically the tooling for the cryostating)  
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Thermal shield (50-75K) 

Coupler 
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Bi-phase pipe 

Cavity top supply Cavity 
cooling 
down 
lines 

Coupler 
cooling 

Short cryomodule cryogenic scheme 

 

SM18 connexion valves 
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Cooling lines 
Requirements: 1 cooling line per cavity 

Cavity cooling 
down lines 

Expectation (machine): 1 cooling line for the hole string of cavities ? 

Mass flow rate 2.5g/s 
per cavity 
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Requirements: 1 JT valve may allow for the filling of the first cavity then for the filling of the 
others via a roman fountain (successive helium fall filling via the diphasic pipe) 

Slope : 1.7% (ajustable from 0 to 2% for the tests) 

Filling lines 

Cavity top supply 

Mass flow rate 10g/s 
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Requirements: If slope = 0% or in case of a problem with the roman fountain (superfluid) 
1 filling line per cavity (each being equipped with a JT valve) 

Slope : (0% for the tests) 

Filling lines 

(Prototype only: 

priority = test bench for 
a string of 4 cavities) 

Cavity top supply 

Mass flow rates 2.5g/s 
per cavity 
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Coupler cooling line 
Requirements: One single line for the cooling of the couplers. 
4 outlets with 4 control valves @ 300K  
1 vaporizer (boiler) 

Vaporizer 

Outlets 

Mass flow rate 0.8g/s 
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Intercavity supports 

RF coupler double-walled tube flange fixed to vacuum vessel 

The RF coupler (its double-walled tube) provides: 
-  fixed point for each cavity (thermal contractions)   
-  mechanical supporting of each cavity on the vacuum vessel 

 
The intercavity supports provide: 
- a 2nd vertical support to each cavity (limits vertical self-weight sag) 
- relative sliding between adjacent cavities along the beam axis 
- enhancement of the transverse stiffness to the string of cavity  
 (increases the eigenfrequencies of first modes)  
 

The concept 
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Coupler / Vacuum vessel interface 
Interface  fixed point, compensation of the geometrical defaults {coupler + cavity} 

 

 
Detail designed done 
A mock-up is under construction by CERN 
 To be tested (Q1/2012) 

• Status: 
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Free space for supports 

Inter-cavity supports 
•Thermal contraction: 
▫Longitudinal 

4.5 mm 
 
▫Transversal 

1.15 mm 
Max displacement 
  of beam axis = 0.6 mm (transient)  
    deformation of helium tank 
 

▫Vertical 
1.2 mm 
Blocked  
    deformation of helium tank 

 
Detail designed under progress 
 A mock-up is under construction by CERN 
 To be tested (Q1/2012) 

• Status: 

“rigid”{Coupler+cavity}  

2 supports 
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≈6000 

≈7000 

Constraints 
 Constraints due to the assembly method of the string of cavities 

 Pre-Alignment in the clean room required (interconnection bellows) 
 Cavities cleaned and filled with nitrogen (1020mbar)  2 x valves minimum  
 

 
 

Impact on the vacuum  vessel global size 



19 

246 

1
1

3
0

 

Ø480 

Ø
in

t1
2

0
0

 m
in

 

m
in

im
u

m
 

Outer part of the 
coupler disassembled 

 Constraints due to the supporting System: 
 Cavities supported and fixed by the lower 
flange of the double-wall tube of the coupler 
 Size of the power coupler    
 Size of the vacuum gauge 

 

Ø600 Coupler Bearing Ports 
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Bearing Ports 

Maintenance access ports 

Requirements 

Access to the tuner, the HOM, without decryostating Maintenance aspects : 
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Vacuum vessel concepts 
• Cylindrical vacuum vessel (LHC type) 
 

 

• Bottom aperture 

• Top apperture 

 

  Horizontal cryostating 

    Vertical cryostating 

• Vacuum vessel with longitudinal aperture 
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  Horizontal cryostating Tooling Studies 
Reference beam path 

and rolling frame 

Rolling reference tool 

Cantilever tooling 
  Vertical Cryostating Tooling Study 

3 concepts were studied (8 cavities cryomodule)  

 

 

 

Assembly procedure 

• dressing of the string of cavities 

• alignment 

• cryostating 

 

1 concept was studied (8 cavities)  

• All tools were compared (for long and short cryomodule) 
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Retained concept 

Cylindrical vacuum vessel with  
long top aperture 

• Main dimensions 

Aperture sealing 
• Prototype (short cryomodule) : polymer seal placed in a groove / (soft) welding 
• Machine cryomodule (long) : welding 

• Aperture concept 

e=6mm 

e=10mm 
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Maximum deflection = 0.65mm 

Max sliding between cover and 
flange  = 0.65mm 

• Mechanical studies 
• Static analysis 
 Different  loading scenarii (linked to the cryostating procedure) 

• VV Weight 
• VV Weight + loading with the string of cavities 
• Vacuum 
• Transport 

 

• Buckling (linear) analysis  

• Construction study 
A company was consulted to verify the possibility (and cost) of constructing this vacuum vessel.  

NB: The company (CMI) is currently in charge of 3 vacuum vessels (being 9, 10 and 11m long) for 
spare connection cryostats for the LHC. 

 The vessel fulfills mechanical requirements (optimization still needed)  

 The vessel seems to be feasible (with a 20% higher cost – 1 unit) 
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Cold magnetic shielding 
2 concepts were studied: 

Discontinuous shielding: Continuous shield: 

Need to be mounted before the tuner 
End cap closures: 
- lack of space  
- needs of several apertures (tuner supports)  
→ solution abandoned 
 
Alternative solution (CERN):  
magnetic shield inside the cavity LHe tank 
→ difficulty to manufacture the tank 
→ solution abandoned  
(now for the prototype;   
could be studied again  
in the future) 

Solution retained  
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Thermal shielding 
Several concepts were studied (some for a cylindrical vacuum vessel) 

Favored solution: 
Continuous shield 2 (or 3) main parts 
 

50K 

300K 

Interfaced on the coupler flange 
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Cryogenic distribution 

Diphasic line + filling line + 2K phase separator 
• One component 
• Assembled separately outside the clean room 
• Tightness can be fully tested independently  
• Mounted on the string of cavities during the dressing phase 

Filling lines 

Diphasic line     80mm                 2K, 31mbar 

Coupler cooling line 

Cooling line 

Coupler cooling line (+boiler) 
• The line is assembled on the couplers during the dressing phase  
• The vapor generator (boiler) is integrated in the string of cavities 
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Cryogenic distribution 
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• A ½-lenght cryomodule for the full test of 4 β=1 cavities is being design for the 
CERN 

Issued from a collaboration between different institutes, it will be as similar as 
possible to a machine-type cryomodule for a possible SPL machine 

 
• For now: 

o Cryo-module requirements are settled 
o Most of the conceptual choices are made (cavity supporting system, cryogenic 

scheme…) 
o Conceptual design study is (nearly) over  review: November 4th 2011  
o Still needing of some conceptual design work (cryogenic jumper connection, 

thermal shield) 
 
• Perspectives: 

o Detailed design is beginning (mid 2012) 
o Test of the cryomodule  2014 

 

http://indico.cern.ch/categoryDisplay.py?categId=1893 ] SPL on indico:  

http://indico.cern.ch/categoryDisplay.py?categId=1893
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