The LIU-PSB Project K. Hanke for the PSB Upgrade WG SGUI 02/02/12

C.Lon a beauti

BR. BHZ 21

The LIU Project

The LHC Injectors Upgrade Project (LIU) has been put in place to propose and implement the means for:

- allowing LHC & HL-LHC to reach their maximum potential for physics
- ensuring a reliable operation of the LHC for physics until the end of its life (≥ 2030 taking into account possibilities of LHeC & HE-LHC...)
- proper use of resources (> 150 MCHF material budget and > 300 man.years) with unavoidable interferences with other priorities of the organization

PSB Upgrade

The LIU Project

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

Scope of LIU-PSB

upgrade of the injection from 50 MeV protons to 160 MeV H- and increased intensity

- re-build injection line for 160 MeV
- replace injection septum by stripping foil
- injection bumps
- diagnostics
- ...

upgrade of rings and extraction / transfer from 1.4 GeV to 2.0 GeV and increased intensity

 replace main power supply, number of smaller power supplies, magnets, kickers, etc.

- 1. Linac4 will allow for production of higher brightness beams in the PSB
 - \rightarrow higher injection energy (160 MeV)
 - $\rightarrow H^{-}$ injection
- 2. higher extraction energy into the PS (2 GeV)
 - → eases PS injection (weaker space charge, transversely smaller beams)

Why rebuilding the Injection Region

- increased energy from 50 MeV to 160 MeV with Linac4
- \rightarrow reduce space-charge effects at PSB injection
- injection of H- ions rather than protons

PSB Upgrade

- → significantly reduce injection losses (at the moment about 50% of the beam is lost on the injection septum!)
- → more flexibility in tailoring emittances by transverse phase space painting

		Ring	1	Ring 2		Ring	3	Ring	4	Sur		
0	LTB.BCT60	1873		1826		18 52		1903		7438		
1	BI.BCT10	1820	97 %	1773	97 %	1831	99 %	1884	99 %	7293	98 %	0
2	BI.BCT20	1640	90 %	1601	90 %	1604	88 %	1654	88 %	6500	89 %	1
3	Injection	1008	61 %	1075	67 %	982	61 %	915	55 %	3981	61 %	2
4	Capture	838	83 %	959	89 %	905	92 %	816	89 %	3519	88 %	3
5	Accel.	631	75 %	918	96 %	871	96 %	693	85 %	3113	88 %	4
6	BT.BCT.00									3121	100 %	5
7	BTP.BCT.00									1	0 %	6
8	BTM.BCT.00									10	0 %	6
9	BTY.BCT112									NaN		6
10	BTY.BCT.213									2910		9
11	BTY.BCT.325									4		9

Injection Region for 160 MeV

Present Multiturn Injection

etc.

as this process takes place, subsequent linac beam "slices" are injected, with increasing oscillation amplitude around the instantaneous closed orbit ("horizontal stacking")

beamlets are now "polygons", as they have undergone several cuts

they spiral up around the (moving) closed orbit, leading to a density distribution which is dense in the core and less dense in the outer part

Charge Exchange Injection

more technical details:

ightarrow review held 9-10 November, see

https://indico.cern.ch/conferenceTimeTable.py?confId=158153#20111109

Injection Region Lay Out

Present and Future Injection Region

PSB Upgrade

B. Goddard, Review on PSB 160 MeV H⁻ Injection, 9-10 November 2011

Booster Injection Planning

- 1. Connection of Linac4 to the PSB during LS1 ruled out
- 2. Connect to the PSB during an intermediate length shut-down ("LS1.5")
- 3. Connect to the PSB during LS2 (presently assumed in 2018)

hope to know more after Chamonix 2012 detailed planning being worked on

PSB Upgrade

Upgrade of the Booster to 2.0 GeV

study launched following Chamonix 2010
→ feasibility, cost & time lines confirmed
RCS alternative studied following Chx. 2011
→ Booster option retained

3rd energy upgrade:

- from 800 MeV to 1 GeV (1988)
- from 1 GeV to 1.4 GeV (1999)
- from 1.4 GeV to 2.0 GeV (LS2)
- no technical showstoppers identified
- however a number of equipment and
- systems need to be changed or upgraded
- high-impact items: MPS, RF, kickers, septa, ...

Expected Performance Gain with 2.0 GeV

LASLETT TUNE SHIFT

$$\Delta Q_{x,y} = \frac{r_p N_b}{(2\pi)^{\frac{3}{2}} \gamma^2 \beta \sigma_z} \oint \frac{\beta_{x,y}(s) ds}{\sqrt{\epsilon_{x,y} \beta_{x,y}(s)} (\sqrt{\epsilon_x \beta_x(s)} + \sqrt{\epsilon_y \beta_y(s)})}$$

if we assume that:

- \Rightarrow the optics at the PS injection remains the same
- ⇒ the bunch length does not change

$$\frac{\left(\gamma^2\beta\right)_{2\,\text{GeV}}}{\left(\gamma^2\beta\right)_{1.4\,\text{GeV}}} = 1.63 \qquad \Longrightarrow \qquad \frac{N_b}{\epsilon_x\epsilon_y} \quad \text{up to } 63\% \text{ larger}$$

physics

Alternative

with new

magnet studied

2012

Main Power Supply

Market survey

and call for

tender

completed

2014

physics

2015

Benefits

2011

• Overall voltage available increases and would allow a reduction of the RMS current using a faster ramping.

Specification

ready for

submission

LS1

2013

• The capacitor bank totally absorbs the peak power on the 18kV network. Meyrin SVC would then become optional.

• Spare sharing between MPS A and B and eventually with POPS.

Design baseline

confirmed and

refined

- Only a few new cables needed between the reference magnet (BCER) and the MPS.
- New B-field regulation to minimize eddy currents and saturation effects impact at higher current and acceleration rate.

Drawbacks

• Cost.

Main Power Supply

16

Magnets

- main dipoles can operate at 2 GeV with some modifications (cooling, retaining plates)
 - some concern about mechanical stress when pulsing at 2 GeV and 0.8 Hz
 - number of other magnets to be changed

Booster main magnet undergoing tests for operation at 2 GeV

SGUI 2-Feb-2012

A. Newborough

RF System

5-cells open cavity.

Solid-State amp.

Full assembly.

Installation layout in PSB 6L1.

Finemet[®] on a cooling ring. SGUI 2-Feb-2012

Vacuum chamber.

Other Items

Cooling & Ventilation

- refurbishment of cooling station and some distribution piping
- complete refurbishment of existing ventilation plant keeping the same functionalities

Electrical Systems

- re-design of the system has started

Beam Intercepting Devices

- new dump and beam stopper being designed
- removal of the old and installation of the new dump being studied for LS1

Extraction & Transfer

 number of septa/kickers cannot operate at 2 GeV, notably extraction kickers (BE.KFA) and recombination septa (BT.SMV)

• Other items:

- beam instrumentation, transport, controls, interlocks, design office, vacuum, etc. etc.

LIU-PSB WBS

https://espace.cern.ch/liu-project/liu-psb/default.aspx https://edms.cern.ch/document/1146814/12

Work-Package	Responsible	Unit
2.Beam Dynamics	C. Carli	BE/ABP
3.Magnets	D. Tommasini, A. Newborough	TE/MCS
4.RF Systems	A. Findlay, M. Paoluzzi, M.E. Angoletta, A. Blas, A. Butterworth	BE/RF
5.Power Converters	S. Pittet, D. Nisbet	TE/EPC
6.Instrumentation	J. Tan	BE/BI
7.Beam Intercepting Devices	O. Aberle, A. Massi	EN/STI
8.Vacuum System	J. Hansen	TE/VSC
9.L4-PSB Transfer and PSB Injectio	n W. Weterings, C. Carli	TE/ABT, BE/ABP
10.PSB Extraction and PSB-PS Transfer	J. Borburgh, W.Bartmann	TE/ABT
11.Controls	S. Jensen	BE/CO
12.Electrical Systems	D. Bozzini, S. Olek	EN/EL
13.Cooling and Ventilation	M. Nonis	EN/CV
14.Installation, Transport and Handling	I. Ruehl, C. Bertone	EN/HE
15.Civil Engineering	L.A. Lopez-Hernandez	GS/SE
16.Radiation Protection	J. Vollaire	DGS/RP
17.Interlock Systems	B. Puccio, P. Dahlen, B. Todd	TE/MPE
18.Alarms		/
19.Access Systems - Doors		/
20.Survey	T. Dobers	BE/ABP
21.Commissioning and Operation	B. Mikulec	BE/OP
22.Dismantling		/

SGUI 2-Feb-2012

Time Lines

- Linac4 connection possible as from end 2015, constrained by LHC stops
- full upgrade including 2 GeV to be completed during LS2

BTY Line at 2 GeV

pre-study done by D. Voulot

can the BTY line handle the 2 GeV beams? how many magnets/power supplies need to be replaced? consequences for the shielding? beam intercepting devices?

assumptions:

- Consider BTY line only: BT, BTM are already covered by LIU
- Base settings:
 - NORM.GPS/NORM.HRS working sets
 - MAD files
- assume no change in optics
- assume only 1.4 and 2 GeV available after the upgrade (PSB cannot provide both 1 and 2 GeV beams)

BTY Line

D. Voulot

BTY Magnets

- quadrupoles
 - Q100 target focalization (4 units)
 - Q130 beam transport (15 units)
- dipoles
 - HB4 from former ISR transfer lines (4 units)
- correctors
 - type 1 H-V corrector magnets from PSB (14 units)
 - correctors have enough margin for 2 GeV

Quadrupoles

			To GPS					То	HRS				
			Carli	2003	NORMGPS	Calibration	Carli 2003		NORMHRS	Calibration	Magnet	Power C	onverter
				1.4GeV	1.4GeV	2.0GeV		1.4GeV	1.4GeV	2.0GeV	peak current	specification	
Quadrupole	type	Leq (m)	k (m–2)	I(A)	I(A)	I(A)	k (m–2)	I(A)	I(A)	I(A)	I(A)	U(V)	I(A)
BTY.QDE104	Q130	0.56	-0.89	182.20	182.20	243.97	-0.89	182.20	182.20	243.97	220.0	60	220
BTY.QFO108	Q130	0.56	0.66	134.95	134.95	178.22	0.66	134.95	134.95	178.22	220.0	60	220
BTY.QDE113	Q130	0.56	-0.89	182.26	182.26	244.06	-0.89	182.26	182.26	244.06	220.0	60	220
BTY.QFO119	Q130	0.56	0.67	136.51	124.60	180.32	0.67	136.51	124.60	180.32	220.0	60	220
BTY.QDE120	Q130	0.56	-0.97	198.53	198.53	268.07	-0.97	198.53	198.53	268.07	220.0	60	220
BTY.QFO122	Q130	0.56	0.38	77.33	77.33	102.58	0.38	77.33	77.33	102.58	220.0	60	220
BTY.QFO148	Q130	0.56	0.23	47.31	47.31	63.49	0.23	47.31	47.31	63.49	220.0	60	220
BTY.QDE151	Q130	0.56	-0.56	113.90	113.90	150.26	-0.56	113.90	113.90	150.26	220.0	60	220
BTY.QFO153	Q130	0.56	0.38	77.06	77.06	102.23	0.38	77.06	77.06	102.23	220.0	60	220
BTY.QFO179	Q130	0.56	0.00	0.00	0.00	0.00	0.53	107.86	107.10	142.32	220.0	50	150
BTY.QDE182	Q130	0.56	-0.21	43.07	43.07	57.92	-0.81	164.67	164.62	218.97	220.0	60	220
BTY.QFO184	Q130	0.56	0.33	67.12	67.12	89.32	0.51	105.15	105.12	138.78	220.0	60	220
BTY.QDE209	Q100	1.15	-0.37	132.42	133.12	177.54					700.0	50	300
BTY.QFO210	Q100	1.15	0.40	140.07	140.81	187.99					700.0	90	350
BTY.QFO304	Q130	0.56					0.96	196.62	155.62	265.21	220.0	60	220
BTY.QDE310	Q130	0.56					-0.89	182.53	182.53	244.45	220.0	60	220
BTY.QFO311	Q130	0.56					0.75	153.53	152.53	203.49	220.0	60	220
BTY.QDE321	Q100	1.15					-0.53	186.10	186.11	248.97	700.0	50	300
BTY.QFO322	Q100	1.15					0.52	182.55	182.74	244.37	700.0	90	350

• some disagreement between calculated and actual settings (assume largest value)

- 5 quadrupoles exceed the limits (red), 3 within 10% of specifications (orange)
- new power supplies are required
- magnets can be upgraded \rightarrow tests needed

SGUI 2-Feb-2012

D. Voulot

Dipoles

		То	GPS	То	HRS				
		NORMGPS	Linear scaling	NORMHRS	Linear scaling	Magnet peak	Magnet peak		
		1.4GeV	2.0GeV	1.4GeV	2.0GeV	current	field	Power Convert	er specification
Dipole	type	I(A)	I(A)	I(A)	I(A)	I(A)	B(T)	U(V)	I(A)
BTY.BVT101	HB4	442.55	575.53	442.55	575.53	540.0	1.224	250.0	500.0
BTY.BVT116	HB4	447.00	581.32	447.00	581.32	540.0	1.224	70.0	500.0
BTY.BHZ301	HB4			449.52	584.59	540.0	1.224	250.0	500.0
BTY.BHZ308	HB4			453.00	589.12	540.0	1.224	70.0	500.0

• power converters cannot cope with the new currents \rightarrow need to be replaced

- magnets can probably be upgraded to 600 A (increased water cooling) → need simulations and test
- calibration curve starts to show saturation above 350 A
- two dipoles need to become PPM (BVT101, BHZ301)
- special scheme used to go from zero to normal setting, cannot pulse quickly from normal setting to zero

PPM Operation

- all quadrupoles operate in DC mode except BTY.QFO179, BTY.QDE182 and BTY.QFO184
- both magnets and power converters are designed for PPM operation
- PPM operation could help reduce water cooling needs by reducing the RMS currents
- test of power converters in PPM mode in December 2011 with 1 and 1.4 GeV settings
- OK for all units except:
 - 1 Q130: BTY.QDE120 (to be replaced anyway)
 - 2 Q100: BTY.QDE209 and BTY.QDE321
- need to test field stability with beam (planned for next start-up)

BTY Magnet & Power Supply Summary

Logical Name	Model	Designation	Building	Vmax	Imax	magnet type	Lin	nits	Setting 1 GeV		ting 1 GeV Setting 1.4 GeV		etting 1.4 GeV Setting 2 GeV		PPM at 1.4 GeV	2 GeV upgrade		
							Imin	Imax	GPS	HRS	GPS	HRS	GPS	HRS				
BTY.BVT 101	B1/IEP-REC	IEP avec récupération 100kW	361	250	500	HB4			35	0.3	44	442.6 573.5		3.5		new 700A/±300V		
BTY.BVT 116	A3/IP	InverPower 35kW	361	70	500	HB4			35	3.9	44	7.0	581.3			new 700A/±300V		
BTY.BHZ 301	B1/IEP-REC	IEP avec récupération 100kW	197	250	500	HB4				355.9		449.5		584.6		new 700A/±300V		
BTY.BHZ 308	A3/IP	InverPower 35kW	197	70	500	HB4				358.6		453.0		589.1		new 700A/±300V		
BTY.QDE 104	MG-FWD	MG Free Wheel Diode [220A, 60V]	361	60	220	Q130	100	190	14	4.2	18	2.2	24	4.0	ОК	reuse A3/IP		
BTY.QFO 108	MG-FWD	MG Free Wheel Diode [220A, 60V]	361	60	220	Q130	50	140	10	6.8	13	5.0	17	8.2	OK			
BTY.QDE 113	MG-FWD	MG Free Wheel Diode [220A, 60V]	361	60	220	Q130	100	190	14	4.3	18	182.3		4.1	OK	reuse A3/IP		
BTY.QFO 119	MG-FWD	MG Free Wheel Diode [220A, 60V]	197	60	220	Q130	50	150	98	3.6	12	4.6	180.3		OK			
BTY.QDE 120	MG-FWD	MG Free Wheel Diode [220A, 60V]	197	60	220	Q130	150	210	15	7.2	19	198.5		8.5 26		8.1	not OK	new A2/IP
BTY.QFO 122	MG-FWD	MG Free Wheel Diode [220A, 60V]	197	60	220	Q130	50	100	61	2	77.3		102.6		OK			
BTY.QFO 148	MG-FWD	MG Free Wheel Diode [220A, 60V]	197	60	220	Q130	30	60	37	.5	47	.3	63.5		OK			
BTY.QDE 151	MG-FWD	MG Free Wheel Diode [220A, 60V]	197	60	220	Q130	50	120	90).2	11	3.9	150.3		OK			
BTY.QFO 153	MG-FWD	MG Free Wheel Diode [220A, 60V]	197	60	220	Q130	50	100	61	.0	77	77.1		77.1 102.2		2.2	OK	
BTY.QFO 179	S150A	S150A [±150A, ±50V]	197	50	150	Q130	0	150	0.0	84.8	0.0	107.1	0.0	142.3	OK	reuse MG-FWD		
BTY.QDE 182	MG	MG [220A, ±60V]	197	60	220	Q130	30	120	34.1	130.3	43.1	164.6	57.9	219.0	OK	new A2/IP		
BTY.QFO 184	MG-FWD	MG Free Wheel Diode [220A, 60V]	197	60	220	Q130	50	110	53.1	83.2	67.1	105.1	89.3	138.8	OK			
BTY.QFO 304	MG-FWD	MG Free Wheel Diode [220A, 60V]	197	60	220	Q130	100	200		123.2		155.6		265.2	ОК	new A2/IP		
BTY.QDE 310	MG	MG [220A, ±60V]	197	60	220	Q130	100	200		144.5		182.5		244.5	ОК	new A2/IP		
BTY.QFO 311	MG-FWD	MG Free Wheel Diode [220A, 60V]	197	60	220	Q130	100	200		120.8		152.5		203.5	OK	new A2/IP		
BTY.QDE 209	A1/IP	InverPower 15kW	197	50	300	Q100	70	150	104.8		132.4		177.5		not OK			
BTY.QFO 210	A2/IP	InverPower 31.5kW	197	90	350	Q100	100	200	110.9		140.1		188.0		OK			
BTY.QDE 321	A1/IP	InverPower 15kW	197	50	300	Q100	100	200		147.3		186.1		249.0	not OK			
BTY.QFO 322	A2/IP	InverPower 31.5kW	197	90	350	Q100	120	220		144.7		182.7		244.4	OK			

• need nine new power supplies and reassign three

Courtesy S. Pittet

- keep Q100 BTY.QDE209 and BTY.QDE321 in DC
- operate all other quadrupoles in PPM between 2 GeV and lowest possible value \rightarrow need to adjust the limits
- same mode of operation for the two switching dipoles (3-way PPM, cannot switch down in consecutive pulses) \rightarrow need test

Power Supply Summary and Cost Estimate

		Setting	Upgrade	
	Setting	2 Gev	cost	
	2 Gev	+10%	@2GeV	
Logical Name	[A]	[A]	[kCHF]	
BTY.BHZ 301	585	644	500	new 700A/±300V
BTY.BHZ 308	590	649	500	new 700A/±300V
BTY.BVT 101	576	634	500	new 700A/±300V
BTY.BVT 116	582	640	500	new 700A/±300V
BTY.QDE 104	244	268	0	reuse A3/IP
BTY.QDE 113	244	268	0	reuse A3/IP
BTY.QDE 120	268	295	160	new A2/IP
BTY.QDE 182	219	241	160	new A2/IP
BTY.QDE 310	245	270	160	new A2/IP
BTY.QFO 179	142	156	0	reuse MG-FWD
BTY.QFO 304	265	292	160	new A2/IP
BTY.QFO 311	204	224	160	new A2/IP
			2800	

Courtesy S. Pittet

- total cost for power supplies ~2.8
 MCHF
- largest cost item are dipole supplies (need high power for switching)
- the cabling for the four dipoles needs to be replaced ~37 kCHF
- assume all magnets can be kept

RP and Shielding

- radiation will scale with power (no significant change in cross sections between 1.4 and 2 GeV)
- BTY shielding design was very conservative (AH Sullivan 1993)
 assuming that: '1% of the maximum beam, or 0.2% per meter of beam
 path, could be lost anywhere continuously along the beam line'
 'maximum losses for which hand-on maintenance of the accelerator
 component would be possible due to the high residual dose rate
 - (several mSv/h near the beam line)'
- in reality losses and residual dose rates are many orders of magnitude lower (several uSv/h)
- shielding is not expected to be an issue even for a four fold increase of the beam power (2.8 →10 kW)
- need more detailed analysis plus RP survey after power upgrade

Beam Intercepting Devices

main concern: beam stopper

- not water cooled
- designed for lower beam power
- replacement of all beam stoppers foreseen as part of the PS complex consolidation

other beam intercepting devices: SEM-grids, MTVs

- standard diagnostics used elsewhere in the PS complex
- should stand the power increase

LIU-PSB Summary

- initial Task Force has turned into an approved project within LIU
- •TDR to be written
- ongoing MD activity during the next years
- some work during coming winter stops (removal ion distributor, Finemet test installation, ...)
- some work to be done during LS1: change of the Booster dump, renovation of handling equipment, cables?, ...)
- most work in LS2 (complete hardware upgrade); if Linac4 connection could be advanced, this would reduce the stress on the intervening groups and on the recommissioning, and is therefore the preferred scenario
- if Linac4 and the 2 GeV upgrade will coincide in LS2, we will have a lot to do

BTY@2GeV Summary

- upgrade to 2 GeV feasible at a total cost of about 2.8 MCHF
- assume all magnets can be upgraded

 \rightarrow need extra cooling

 \rightarrow need simulations and tests

- PPM operation would help saving power and cooling needs
 initial test in December, test with beam next spring
- at first glance little concern with shielding and beam intercepting devices (need more detailed analysis)
- have not assessed targets and target area, only BTY line!
- see https://edms.cern.ch/document/1178703/1.0
- **<u>not part of LIU!</u>** / would need its own little project & funding

The 2 GeV Booster for the beams to the PS is approved and will come by LS2. If ISOLDE wants to take advantage of the increased energy, clear interest must be stated and things need to be brought on their way rather soon.