SGUI meeting 2012 N.Imai

BEAMS OF REFRACTORY ELEMENTS

Laser break-up molecules and ionization

N. Imai, B.A. Marsh, M. A. Czapski, D. Fink, V. Fedosseev, T.M. Mendonca, S. Rothe, R. Rossel, M. Se I iverstov, T. Stora

Refractory elements

\Box melting points ~ 2000 K

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1A	1A 2A			4B	5B	6B	7B	8B			1B	2B	3 A	4A	5A	6A	7A	8A
Period									I	on source	e:								
1	H Hydroger			1					+ Surface -									2 He	
2	3 Li	4 Be								Laser				5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 SC	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 C0	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 CS	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 DS	111 Rg							
* Lan	* Lanthanides			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
** Actinides			**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Molecular beams

\Box ZrF₃⁺ @ ORSAY

by isocele2 Z. Phys. A 309, 185 (1982)

Laser-induced breakup + ionization

Feasibility study

Producing ZrF⁺

S. Soorkia et al.,

J. Phys. Chem. A, 2011, 115 (34), pp 9620-9632,

Figure 2. Mass spectrum of the zirconium fluoride radical. The relative intensities of the five naturally occurring isotopologues, i.e., 90ZrF, 91ZrF, ⁹²ZrF, ⁹⁴ZrF, and ⁹⁶ZrF, are in the ratio of the isotopic abundances of Zr.

> **TOF** spectrum $w/He + CH_3F gas (2\%)$

Laser radiation of 2 steps: breaking up molecules, ionizing Zr

Basic parameters

□ Ionization of Zr : Zr → Zr⁺ + 1e-Ionization energy Zr(I) = 6.63390 eV ~2 x 355nm (3.5 eV) cross section ~ 4x10⁻¹⁷ cm² (Fe)

■ Bonding energy of ZrF : ZrF → Zr +F = 6.3 eV (!?) ~2 x 355nm (3.5 eV) cross section ~ $5x10^{-19}$ cm²(SF₆) !?

Test with 355nm@ LARIS lab.

TOF spectrum w/only Ar

Ablation laser: 355 nm 8 mJ

UV(non-resonant ionization): 355 am 23tim 2012 N.Imai 2/Feb./2012

TOF spectrum w/Ar + $CF_4(6\%)$

 ZrF⁺ peaks were seen but disappeared in several minuets.
Zr⁺ peaks were enhanced and seemed stable.
We couldn't distinguish the breakup and ionization effect.

Ablation laser: 532 nm 8 mJ UV(non-resonant ionization): 355 nm 2.3 mJ

2/Feb./2012

UV as dissociator and excitator

HV of MCP -3000 → -2800V

 $CF_4 > 6\%$ may be too much. A few % is enough to enhance the Time [s]

2/Feb./2012

Non resonant ionization of Zr

Ablation laser: 1064 nm 3mJ

Dissociation + Ionization: 355 nm 2mJ

2/Feb./2012 SGUI meeting 2012 N.Imai

Mass spectrum

- No ZrF⁺ was seen w/Ar +CF₄
- Ratio of Zr/ZrO doesn't change so much

UV (355nm) power dependence

1. Only Ar gas flow $Zr \rightarrow Zr^+ : 6.6 \text{ eV}$

2. Ar + CF₄ (2.4%) gas flow $Zr \rightarrow Zr^+$ and $ZrF \rightarrow Zr + F$ $Zr \rightarrow Zr^+$

No difference between Ar and Ar+CF₄

Breaking-up molecules seems saturated.

Possible mechanism

□ ZrF = Zr + F - 6.3 eV

\square ZrF + CH₃ = Zr +CH₃F -1.82 eV

S. Soorkia et al., J. Phys. Chem. A, **2010**, 114 (18), pp 5655

$\Box ZrF+CF_3 = Zr+CF_4 - 0.83 eV$

0.83 eV = 1520 nm 1064 nm Nd:Yag is enough ?

On-going works...

3rd hw (355nm), 2nd hw (532nm), 1064 nm of Nd:Yag power dependence/time difference will be checked.
Removing of ZrO from Zr rod

Etching the Zr rod with acid prior to ablation

How to implement at ISOLDE?

□ VADIS + RILIS

- Breaking-up molecule: VADIS cavity w/several eV ?
- or breakup laser?

 Resonant ionization: RILIS
The resonant ionization scheme hasn't been established yet.

Summary

- Feasibility study of breaking-up refractory element fluoride is on-going with ablation + TOF spectrometer of Zr.
- In the case of non-resonant ioniztion, with small injection of CF₄ in Ar gas, large enhancement of Zr⁺ peaks were observed.
- Both laser for resonant ionization of Zr and breakup molecules are ready.
- Further investigation of the phenomenon provides promising experimental opportunity.

Implementation with VADIS + RILIS

Establishment of resonant-ionization:
hopefully 3 steps-resonant ionization

La Fin

Mass spectrum of resonant ionization

