Top Quark Forward-Backward Asymmetry in the Lepton+Jets Channel The CDF Collaboration presented by D. Amidei University of Michigan CERN May 2012 # tt charge asymmetry in NLO QCD - $C = -1 \& C = +1 \rightarrow A_C$ - at Tevatron this is an A_{FB} - measure in $\Delta y = y_t y_{\bar{t}}$ - prediction now includes EWK part (Kuhn-Rodrigo, Hollik-Pagani, Manohar-Trott) - $A_{FB}(total) = A_{FB}(QCD) \times 1.26 = 0.066$ (our Powheg model) #### differential behavior (Almeida et al., PRD87, 014008, 2008) #### prior measurements #### inclusive CDF l+jet 5.3 fb⁻¹ $$15.8 \pm 7.4$$ CDF DIL 5.1 fb⁻¹ 42.0 ± 16.0 CDF combo 20.1 ± 6.7 D0 l+jet 5.4 fb⁻¹ 19.6 ± 6.5 informal combo 19.8 ± 4.7 NLO 6.6 #### differential (at bkg subtracted data level) | | $M < 450 \text{ GeV}/c^2$ | $M \ge 450 \text{ GeV}/c^2$ | $ \Delta y < 1.0$ | $ \Delta y \ge 1.0$ | |----------------|---------------------------|-----------------------------|--------------------|----------------------| | CDF l+jets | -2.2 ± 4.0 | 26.6 ± 6.2 | 2.9 ± 4.0 | 29.1 ± 9.0 | | D0 l+jets | 7.8 ± 4.8 | 11.5 ± 6.2 | 6.1 ± 4.1 | 21.3 ± 9.7 | | informal combo | 2.8 ± 3.3 | 19.0 ± 4.4 | 4.5 ± 2.8 | 25.2 ± 6.6 | | NLO + EWK | 1.5 ± 0.3 | 4.9 ± 1.0 | 1.6 ± 0.3 | 7.2 ± 1.4 | #### **BSM** ideas #### s-channel - massive chiral color oct - "axigluon" - RS gluon #### t-channel - W'Z' - color triplets, sextets #### BSM model building must contend with - total $\sigma,\,d\sigma/dM_{tt}$ in good agreement with SM at Tevatron, LHC - absence of other indirect indications #### new CDF analysis - full Run II data set - -8.7 fb^{-1} - add new muon trigger stream - 2498 events (x2 last analysis) - NLO ttbar model - Powheg + EWK corrections - inc. tt p_t dependence a la NLO - multi-bin differential A_{fb}'s - $-A_{fb}(\Delta y), A_{fb}(M_{tt})$ - linear fits, p-values - multi-bin correction to parton level - lepton only asymmetry - p_t dependence of the asymmetry #### selection and reconstruction $$q\overline{q} \rightarrow g \rightarrow t\overline{t} \rightarrow (W^+b)(W^-\overline{b}) \rightarrow (l^+\upsilon b)(q\overline{q}\overline{b}) \rightarrow l^+ + E_T + 4j + \ge 1 \ btag$$ - lepton (e/ μ) E_t/p_t > 20 GeV (/c) - missing E_t > 20 GeV - .g.e. 4 jets E_t > 20 GeV - at least one b-tagged jet - H_t > 220 GeV - 2498 events $bkg = 505\pm123$ ## modeling #### tt: POWHEG NLO - good agreement with mc@nlo, mcfm - pythia showers + CDF simulation - asymmetries - use Powheg denominator - use Powheg central value - x 1.26 for EWK #### CDF b-tag background model CDF Run II Preliminary $L=8.7~{\rm fb}^-$ | | $\geq 4 \text{ je}$ | ets | |------------------|---------------------|-----| | W+HF | $241 \pm$ | 78 | | Non-W | $98 \pm$ | 51 | | W+LF | $96 \pm$ | 29 | | Single Top | $33 \pm$ | 2 | | Diboson | $19 \pm$ | 3 | | Z+Jets | $18 \pm$ | 2 | | Total Background | $505 \pm$ | 123 | | $tar{t}$ 7.4pb | $2037~\pm$ | 277 | | Total Prediction | $2542 \pm$ | 303 | | Data | 2498 | | #### jet multiplicity missing E_t #### top reconstruction $$l^+ + E_T + 4j + \ge 1 btag \rightarrow t\bar{t}$$ - jet parton match and $p_z(v)$ solution using simple constraints and χ^2 - $M_W = 80.4 \text{ GeV/c}^2$ - $M_t = 172.5 \text{ GeV/c}^2$ - btag = b - float jet p_t within errors - sign of lepton → charge of tops # rapidity $$\Delta y = q \cdot (y_{tl} - y_{th})$$ $$= y_t - y_{\bar{t}}$$ $$= 2y_t^{t\bar{t}}$$ $$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$ - A_{fb} data = $(6.6 \pm 2.0)\%$ - A_{fb} pred. = 2.6% ## backgrounds - check in 0-btag sample - ~ 80% non-tt - A_{fb} data = $(2.7 \pm 1.4)\%$ - A_{fb} pred. = 2.1% - suggests - bkgs well modeled - bkgs not source of A_{fb}! Δy of reconstructed ttbar signal subtract background sys uncertainties included CDF Run II Preliminary L = 8.7 fb⁻¹ - - - bkg model $\delta A_{fb} \sim 0.008$ - bkg norm $\delta A_{fb} \sim 0.005$ - A_{fb} data = $(8.5 \pm 2.5)\%$ - A_{fb} pred = 3.3% Δy of reconstructed ttbar signal subtract background sys uncertainties included - - - bkg model $\delta A_{fb} \sim 0.008$ - bkg norm $\delta A_{fb} \sim 0.005$ - A_{fb} data = $(8.5 \pm 2.5)\%$ - A_{fb} pred = 3.3% - rapidity dependence $$A_{FB}(|\Delta y|) = \frac{N(|\Delta y|) - N(-|\Delta y|)}{N(|\Delta y|) + N(-|\Delta y|)}$$ Δv of reconstructed ttbar signal - subtract background - sys uncertainties included - bkg model $\delta A_{fb} \sim 0.008$ - bkg norm $\delta A_{fh} \sim 0.005$ - A_{fb} data = $(8.5 \pm 2.5)\%$ - A_{fb} pred = 3.3% - rapidity dependence $$A_{FB}(|\Delta y|) = \frac{N(|\Delta y|) - N(-|\Delta y|)}{N(|\Delta y|) + N(-|\Delta y|)}$$ - A(Δ y) linear form, slope α - fit $\chi^2_{p,d,f}$ of data = 1.0 - significance - slope is $> 3\sigma$ from 0 - − PE how often $\alpha_{NLO} \ge \alpha_{data}$ - $p_{NLO} = 0.00892$ CDF Run II Preliminary L = 8.7 fb⁻¹ # mass dependence $$M_{tt} < 450 \text{ GeV/c}^2$$ #### mass dependence M_{tt} for forward and backward mass dependent asymmetry $$A_{FB}(M_{t\bar{t}}) = \frac{N_F(M_{t\bar{t}}) - N_B(M_{t\bar{t}})}{N_F(M_{t\bar{t}}) + N_B(M_{t\bar{t}})}$$ #### mass dependence M_{tt} for forward and backward mass dependent asymmetry $$A_{FB}(M_{t\bar{t}}) = \frac{N_F(M_{t\bar{t}}) - N_B(M_{t\bar{t}})}{N_F(M_{t\bar{t}}) + N_B(M_{t\bar{t}})}$$ - linear fit - slope is $>3\sigma$ from 0 - fit $\chi^2_{p.d.f.}$ 0.3 - $p_{NLO} = 0.00646$ CDF Run II Preliminary L = 8.7 fb⁻¹ correct smearing and acceptance $$x_i^{Parton} = A_{ij}^{-1} S_{jk}^{-1} x_k^{Bkg.Sub.}$$ • S⁻¹ unsmear uses SVD (Hocker-Kartvelishvili, 1995) correct smearing and acceptance $$x_i^{Parton} = A_{ij}^{-1} S_{jk}^{-1} x_k^{Bkg.Sub.}$$ A⁻¹ acceptance correction uses powheg model correct smearing and acceptance $$x_i^{Parton} = A_{ij}^{-1} S_{jk}^{-1} x_k^{Bkg.Sub.}$$ systematic uncertainties CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$ | Source | Systematic Uncertainty | |-----------------------------------|------------------------| | Background Shape | 0.014 | | Background Normalization | 0.011 | | Parton Showering | 0.010 | | Jet Energy Scale | 0.005 | | Initial and Final State Radiation | 0.005 | | Color Reconnection | 0.001 | | Parton Distribution Functions | 0.001 | | Correction Procedure | 0.003 | | Total Systematic Uncertainty | 0.022 | | Statistical Uncertainty | 0.041 | | Total Uncertainty | 0.047 | | | | n.b. model bias is not included #### differential cross-section and asymmetry in Δy - A_{fb} data = $(16.2 \pm 4.7)\%$ - A_{fb} pred. = 6.6% - linear form works again - slope - uses full covariance - >3 σ from 0 - >2 σ from powheg # double differential cross-section and asymmetry in M_{tt} and Δy #### lepton asymmetry - lepton follows top - reconstructed lepton η is systematically unencumbered # p_t (ttbar) dependence of the asymmetry - 1) color coherence → backwards top correlated w/ p_t≠0 - 2) NLO tt+j has negative A_{fb} #### expectation @ MC truth: # p_t (ttbar) dependence of the asymmetry - examine at background subtracted level - data vs powheg/pythia shower vs pythia neat #### conclusions in the I+jets top sample in the full Run II Tevatron dataset we have: - measured a M_{tt} and Δy dependent A_{fb} in tt system - found the A_{fb} is - approximately linear in both variables - slopes are 3σ from zero and larger than NLO prediction - corrected the M_{ff} and Δy spectra to derive - differential cross sections - $-A_{fb}$, $A_{fb}(\Delta y)$, and $A_{fb}(M_{tt})$ at the parton level - verified the asymmetry and mass dependence in the lepton alone - measured the dependence of A_{fb} on the tt p_t this is the start of a program of further study.... # additional material # Asymmetry in various selections CDF Run II Preliminary $L=8.7~{\rm fb^{-1}}$ | | | | V | |----------------------|--|--|--| | | $A_{\rm FB} \ (\pm \ [{\rm stat.+syst.}])$ | $A_{\rm FB} \ (\pm \ [{\rm stat.+syst.}])$ | $A_{\rm FB} \ (\pm \ [{\rm stat.+syst.}])$ | | Sample | Inclusive | $M_{t\bar{t}} < 450 \mathrm{GeV/c^2}$ | $M_{t\bar{t}} \ge 450 { m GeV/c}^2$ | | All Data | 0.085 ± 0.025 | 0.025 ± 0.031 | 0.198 ± 0.043 | | Positive Leptons | 0.100 ± 0.037 | 0.044 ± 0.046 | 0.198 ± 0.060 | | Negative Leptons | 0.071 ± 0.035 | 0.008 ± 0.043 | 0.198 ± 0.059 | | Exactly 0 b-tags | 0.056 ± 0.052 | 0.079 ± 0.066 | 0.005 ± 0.085 | | Exactly 1 b -tags | 0.103 ± 0.030 | 0.039 ± 0.037 | 0.226 ± 0.050 | | At least $2 b$ -tags | 0.034 ± 0.046 | -0.014 ± 0.057 | 0.122 ± 0.077 | | Electron Events | 0.058 ± 0.038 | -0.018 ± 0.048 | 0.199 ± 0.062 | | Muon Events | 0.107 ± 0.034 | 0.060 ± 0.041 | 0.197 ± 0.057 | | | | | | # top reconstruction χ^2 ## backgrounds 0 b-tags with top subtracted # Comparison to Previous Background-Subtracted Mass-Dependent Results | Background-
Subtracted A _{FB}
(%) | D0 Lep+Jet, 5.4
fb ⁻¹ | CDF Lep+Jet,
5.3 fb ⁻¹ | CDF Lep+Jet,
8.7 fb ⁻¹ | |--|-------------------------------------|--------------------------------------|--------------------------------------| | M_{tt} < 450 GeV/c ² | 7.6 ± 4.8 | -2.2 ± 4.3 | 2.5 ± 3.1 | | $M_{tt} \ge 450 \text{ GeV/c}^2$ | 11.5 ± 6.0 | 26.6 ± 6.2 | 19.8 ± 4.3 | - Mass dependence somewhat moderated compared to previous CDF result, larger than D0 result - All results statistically compatible # Comparison to the 5 fb⁻¹ Results | Selection | Prediction | CDF, 5.3 fb ⁻¹ | D0, 5.4 fb ⁻¹ | CDF, 8.7 fb-1 | |-----------------------------------|------------|---------------------------|------------------------------------|---------------| | Inclusive | 6.6 | 15.8 ± 7.4 | 19.6 ± 6.5 | 16.2 ± 4.7 | | M_{tt} < 450 GeV/c ² | 4.7 | -11.6 ± 15.3 | 7.8 ± 4.8
(Bkg.
Subtracted) | 7.8 ± 5.4 | | $M_{tt} \ge 450 \text{ GeV/c}^2$ | 10.0 | 47.5 ± 11.2 | 11.5 ± 6.0
(Bkg.
Subtracted) | 29.6 ± 6.7 | | ∆y < 1.0 | 4.3 | 2.6 ± 11.8 | 6.1 ± 4.1
(Bkg.
Subtracted) | 8.8 ± 4.7 | | ∆y ≥1.0 | 13.9 | 61.1 ± 25.6 | 21.3 ± 9.7
(Bkg.
Subtracted) | 43.3 ± 10.9 | • Measure the parton level asymmetries in two bins of M_{tt} and $|\Delta y|$ for direct comparison to previous results bias studies with "Octet A" | $ \Delta y $ | Found Asymmetry | Uncertainty | Truth | |----------------------------|-----------------|-------------|-------| | Inclusive | 0.162 | 0.039 | 0.156 | | $0.0 \le \Delta y < 0.5$ | 0.056 | 0.036 | 0.052 | | $0.5 \le \Delta y < 1.0$ | 0.180 | 0.056 | 0.158 | | $1.0 \le \Delta y < 1.5$ | 0.313 | 0.081 | 0.295 | | $ \Delta y \ge 1.5$ | 0.431 | 0.132 | 0.468 | # mass dependence old vs new