

Top Quark Forward-Backward Asymmetry in the Lepton+Jets Channel

The CDF Collaboration presented by
D. Amidei
University of Michigan

CERN May 2012

tt charge asymmetry in NLO QCD

- $C = -1 \& C = +1 \rightarrow A_C$
- at Tevatron this is an A_{FB}
- measure in $\Delta y = y_t y_{\bar{t}}$
- prediction now includes EWK part (Kuhn-Rodrigo, Hollik-Pagani, Manohar-Trott)
- $A_{FB}(total) = A_{FB}(QCD) \times 1.26 = 0.066$ (our Powheg model)

differential behavior (Almeida et al., PRD87, 014008, 2008)

prior measurements

inclusive

CDF l+jet 5.3 fb⁻¹
$$15.8 \pm 7.4$$

CDF DIL 5.1 fb⁻¹ 42.0 ± 16.0
CDF combo 20.1 ± 6.7
D0 l+jet 5.4 fb⁻¹ 19.6 ± 6.5
informal combo 19.8 ± 4.7 NLO 6.6

differential (at bkg subtracted data level)

	$M < 450 \text{ GeV}/c^2$	$M \ge 450 \text{ GeV}/c^2$	$ \Delta y < 1.0$	$ \Delta y \ge 1.0$
CDF l+jets	-2.2 ± 4.0	26.6 ± 6.2	2.9 ± 4.0	29.1 ± 9.0
D0 l+jets	7.8 ± 4.8	11.5 ± 6.2	6.1 ± 4.1	21.3 ± 9.7
informal combo	2.8 ± 3.3	19.0 ± 4.4	4.5 ± 2.8	25.2 ± 6.6
NLO + EWK	1.5 ± 0.3	4.9 ± 1.0	1.6 ± 0.3	7.2 ± 1.4

BSM ideas

s-channel

- massive chiral color oct
- "axigluon"
- RS gluon

t-channel

- W'Z'
- color triplets, sextets

BSM model building must contend with

- total $\sigma,\,d\sigma/dM_{tt}$ in good agreement with SM at Tevatron, LHC
- absence of other indirect indications

new CDF analysis

- full Run II data set
 - -8.7 fb^{-1}
 - add new muon trigger stream
 - 2498 events (x2 last analysis)
- NLO ttbar model
 - Powheg + EWK corrections
 - inc. tt p_t dependence a la NLO
- multi-bin differential A_{fb}'s
 - $-A_{fb}(\Delta y), A_{fb}(M_{tt})$
 - linear fits, p-values
 - multi-bin correction to parton level
- lepton only asymmetry
- p_t dependence of the asymmetry

selection and reconstruction

$$q\overline{q} \rightarrow g \rightarrow t\overline{t} \rightarrow (W^+b)(W^-\overline{b}) \rightarrow (l^+\upsilon b)(q\overline{q}\overline{b}) \rightarrow l^+ + E_T + 4j + \ge 1 \ btag$$

- lepton (e/ μ) E_t/p_t > 20 GeV (/c)
- missing E_t > 20 GeV
- .g.e. 4 jets E_t > 20 GeV
 - at least one b-tagged jet
- H_t > 220 GeV
- 2498 events $bkg = 505\pm123$

modeling

tt: POWHEG NLO

- good agreement with mc@nlo, mcfm
- pythia showers + CDF simulation
- asymmetries
 - use Powheg denominator
 - use Powheg central value
 - x 1.26 for EWK

CDF b-tag background model

CDF Run II Preliminary $L=8.7~{\rm fb}^-$

	$\geq 4 \text{ je}$	ets
W+HF	$241 \pm$	78
Non-W	$98 \pm$	51
W+LF	$96 \pm$	29
Single Top	$33 \pm$	2
Diboson	$19 \pm$	3
Z+Jets	$18 \pm$	2
Total Background	$505 \pm$	123
$tar{t}$ 7.4pb	$2037~\pm$	277
Total Prediction	$2542 \pm$	303
Data	2498	

jet multiplicity

missing E_t

top reconstruction

$$l^+ + E_T + 4j + \ge 1 btag \rightarrow t\bar{t}$$

- jet parton match and $p_z(v)$ solution using simple constraints and χ^2
 - $M_W = 80.4 \text{ GeV/c}^2$
 - $M_t = 172.5 \text{ GeV/c}^2$
 - btag = b
 - float jet p_t within errors
- sign of lepton → charge of tops

rapidity

$$\Delta y = q \cdot (y_{tl} - y_{th})$$

$$= y_t - y_{\bar{t}}$$

$$= 2y_t^{t\bar{t}}$$

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

- A_{fb} data = $(6.6 \pm 2.0)\%$
- A_{fb} pred. = 2.6%

backgrounds

- check in 0-btag sample
 - ~ 80% non-tt
- A_{fb} data = $(2.7 \pm 1.4)\%$
- A_{fb} pred. = 2.1%
- suggests
 - bkgs well modeled
 - bkgs not source of A_{fb}!

Δy of reconstructed ttbar signal
 subtract background
 sys uncertainties included

CDF Run II Preliminary L = 8.7 fb⁻¹

- - - bkg model $\delta A_{fb} \sim 0.008$
 - bkg norm $\delta A_{fb} \sim 0.005$
- A_{fb} data = $(8.5 \pm 2.5)\%$
- A_{fb} pred = 3.3%

Δy of reconstructed ttbar signal
 subtract background
 sys uncertainties included

- - - bkg model $\delta A_{fb} \sim 0.008$
 - bkg norm $\delta A_{fb} \sim 0.005$
- A_{fb} data = $(8.5 \pm 2.5)\%$
- A_{fb} pred = 3.3%
- rapidity dependence

$$A_{FB}(|\Delta y|) = \frac{N(|\Delta y|) - N(-|\Delta y|)}{N(|\Delta y|) + N(-|\Delta y|)}$$

 Δv of reconstructed ttbar signal

- subtract background
 - sys uncertainties included
 - bkg model $\delta A_{fb} \sim 0.008$
 - bkg norm $\delta A_{fh} \sim 0.005$
- A_{fb} data = $(8.5 \pm 2.5)\%$
- A_{fb} pred = 3.3%
- rapidity dependence

$$A_{FB}(|\Delta y|) = \frac{N(|\Delta y|) - N(-|\Delta y|)}{N(|\Delta y|) + N(-|\Delta y|)}$$

- A(Δ y) linear form, slope α
- fit $\chi^2_{p,d,f}$ of data = 1.0
- significance
 - slope is $> 3\sigma$ from 0
 - − PE how often $\alpha_{NLO} \ge \alpha_{data}$
 - $p_{NLO} = 0.00892$

CDF Run II Preliminary L = 8.7 fb⁻¹

mass dependence

$$M_{tt} < 450 \text{ GeV/c}^2$$

mass dependence

M_{tt} for forward and backward

mass dependent asymmetry

$$A_{FB}(M_{t\bar{t}}) = \frac{N_F(M_{t\bar{t}}) - N_B(M_{t\bar{t}})}{N_F(M_{t\bar{t}}) + N_B(M_{t\bar{t}})}$$

mass dependence

M_{tt} for forward and backward

mass dependent asymmetry

$$A_{FB}(M_{t\bar{t}}) = \frac{N_F(M_{t\bar{t}}) - N_B(M_{t\bar{t}})}{N_F(M_{t\bar{t}}) + N_B(M_{t\bar{t}})}$$

- linear fit
 - slope is $>3\sigma$ from 0
 - fit $\chi^2_{p.d.f.}$ 0.3
 - $p_{NLO} = 0.00646$

CDF Run II Preliminary L = 8.7 fb⁻¹

correct smearing and acceptance

$$x_i^{Parton} = A_{ij}^{-1} S_{jk}^{-1} x_k^{Bkg.Sub.}$$

• S⁻¹ unsmear uses SVD (Hocker-Kartvelishvili, 1995)

correct smearing and acceptance

$$x_i^{Parton} = A_{ij}^{-1} S_{jk}^{-1} x_k^{Bkg.Sub.}$$

A⁻¹ acceptance correction uses powheg model

correct smearing and acceptance

$$x_i^{Parton} = A_{ij}^{-1} S_{jk}^{-1} x_k^{Bkg.Sub.}$$

systematic uncertainties

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$

Source	Systematic Uncertainty
Background Shape	0.014
Background Normalization	0.011
Parton Showering	0.010
Jet Energy Scale	0.005
Initial and Final State Radiation	0.005
Color Reconnection	0.001
Parton Distribution Functions	0.001
Correction Procedure	0.003
Total Systematic Uncertainty	0.022
Statistical Uncertainty	0.041
Total Uncertainty	0.047

n.b. model bias is not included

differential cross-section and asymmetry in Δy

- A_{fb} data = $(16.2 \pm 4.7)\%$
- A_{fb} pred. = 6.6%

- linear form works again
- slope
 - uses full covariance
 - >3 σ from 0
 - >2 σ from powheg

double differential cross-section and asymmetry in M_{tt} and Δy

lepton asymmetry

- lepton follows top
- reconstructed lepton η is systematically unencumbered

p_t (ttbar) dependence of the asymmetry

- 1) color coherence → backwards top correlated w/ p_t≠0
- 2) NLO tt+j has negative A_{fb}

expectation @ MC truth:

p_t (ttbar) dependence of the asymmetry

- examine at background subtracted level
- data vs powheg/pythia shower vs pythia neat

conclusions

in the I+jets top sample in the full Run II Tevatron dataset we have:

- measured a M_{tt} and Δy dependent A_{fb} in tt system
- found the A_{fb} is
 - approximately linear in both variables
 - slopes are 3σ from zero and larger than NLO prediction
- corrected the M_{ff} and Δy spectra to derive
 - differential cross sections
 - $-A_{fb}$, $A_{fb}(\Delta y)$, and $A_{fb}(M_{tt})$ at the parton level
- verified the asymmetry and mass dependence in the lepton alone
- measured the dependence of A_{fb} on the tt p_t

this is the start of a program of further study....

additional material

Asymmetry in various selections

CDF Run II Preliminary $L=8.7~{\rm fb^{-1}}$

			V
	$A_{\rm FB} \ (\pm \ [{\rm stat.+syst.}])$	$A_{\rm FB} \ (\pm \ [{\rm stat.+syst.}])$	$A_{\rm FB} \ (\pm \ [{\rm stat.+syst.}])$
Sample	Inclusive	$M_{t\bar{t}} < 450 \mathrm{GeV/c^2}$	$M_{t\bar{t}} \ge 450 { m GeV/c}^2$
All Data	0.085 ± 0.025	0.025 ± 0.031	0.198 ± 0.043
Positive Leptons	0.100 ± 0.037	0.044 ± 0.046	0.198 ± 0.060
Negative Leptons	0.071 ± 0.035	0.008 ± 0.043	0.198 ± 0.059
Exactly 0 b-tags	0.056 ± 0.052	0.079 ± 0.066	0.005 ± 0.085
Exactly 1 b -tags	0.103 ± 0.030	0.039 ± 0.037	0.226 ± 0.050
At least $2 b$ -tags	0.034 ± 0.046	-0.014 ± 0.057	0.122 ± 0.077
Electron Events	0.058 ± 0.038	-0.018 ± 0.048	0.199 ± 0.062
Muon Events	0.107 ± 0.034	0.060 ± 0.041	0.197 ± 0.057

top reconstruction χ^2

backgrounds

0 b-tags with top subtracted

Comparison to Previous Background-Subtracted Mass-Dependent Results

Background- Subtracted A _{FB} (%)	D0 Lep+Jet, 5.4 fb ⁻¹	CDF Lep+Jet, 5.3 fb ⁻¹	CDF Lep+Jet, 8.7 fb ⁻¹
M_{tt} < 450 GeV/c ²	7.6 ± 4.8	-2.2 ± 4.3	2.5 ± 3.1
$M_{tt} \ge 450 \text{ GeV/c}^2$	11.5 ± 6.0	26.6 ± 6.2	19.8 ± 4.3

- Mass dependence somewhat moderated compared to previous CDF result, larger than D0 result
 - All results statistically compatible

Comparison to the 5 fb⁻¹ Results

Selection	Prediction	CDF, 5.3 fb ⁻¹	D0, 5.4 fb ⁻¹	CDF, 8.7 fb-1
Inclusive	6.6	15.8 ± 7.4	19.6 ± 6.5	16.2 ± 4.7
M_{tt} < 450 GeV/c ²	4.7	-11.6 ± 15.3	7.8 ± 4.8 (Bkg. Subtracted)	7.8 ± 5.4
$M_{tt} \ge 450 \text{ GeV/c}^2$	10.0	47.5 ± 11.2	11.5 ± 6.0 (Bkg. Subtracted)	29.6 ± 6.7
∆y < 1.0	4.3	2.6 ± 11.8	6.1 ± 4.1 (Bkg. Subtracted)	8.8 ± 4.7
∆y ≥1.0	13.9	61.1 ± 25.6	21.3 ± 9.7 (Bkg. Subtracted)	43.3 ± 10.9

• Measure the parton level asymmetries in two bins of M_{tt} and $|\Delta y|$ for direct comparison to previous results

bias studies with "Octet A"

$ \Delta y $	Found Asymmetry	Uncertainty	Truth
Inclusive	0.162	0.039	0.156
$0.0 \le \Delta y < 0.5$	0.056	0.036	0.052
$0.5 \le \Delta y < 1.0$	0.180	0.056	0.158
$1.0 \le \Delta y < 1.5$	0.313	0.081	0.295
$ \Delta y \ge 1.5$	0.431	0.132	0.468

mass dependence old vs new

