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Role of cryogenics

• Compactness through higher fields
d ti b di d f i t– superconducting bending and focussing magnets 

for circular accelerators.
– superconducting acceleration cavities for linear p g

accelerators

• Reducing of specific project costg p p j

• Saving energy
– in electromagnetsin electromagnets
– in acceleration cavities

• Improvement of environment conditions• Improvement of environment conditions
– cryogenic pumping
– low resistive wall in high intensity accelerators
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low resistive wall in high intensity accelerators



Critical current density of superconductorsy p
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Phase Diagram of Heliumg
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Helium as a cooling fluid
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Superfluid Helium as a Magnet Coolant

• Temperature below 2.17 K
• Low bulk viscosityy
• Very large specific heat

– 105 times that of the conductor per unit mass
– 2 x 103 times that of the conductor per unit volume

• Very high thermal conductivity
– 103 times that of cryogenic-grade OFHC copper
– peaking at 1.9 K

still insufficient for long distance heat transport– still, insufficient for long-distance heat transport
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Pressurised vs. Saturated Superfluid Helium

+ Mono-phase (pure liquid)
+ Magnet bath at atmospheric pressure+ Magnet bath at atmospheric pressure

• no air inleaks
• higher heat capacity to the lambda linehigher heat capacity to the lambda line

+ Avoids bad dielectric strength of low-pressure 
gaseous heliumg

– Requires additional heat exchanger to saturated 
helium heat sink

L. Serio Cryogenics for Superconducting Magnets Thermomag, November 2007



L. Serio Cryogenics for Superconducting Magnets Thermomag, November 2007



Steady-state magnets cooling in LHC string
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Magnet temperature in string upon current ramp
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LHC infrastracture and 4.5 K refrigerators
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LHC 1.8 K refrigeration units
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LHC cryogenic distribution system
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What does the LHC cryogenic system need ?

Cooling and ventilationElectric power

Cooling towers

5000 m3/h of waterabout 32 MW; 24 GWh/month
1.2 MCHF/month

Compressed air

Helium and nitrogen

Vacuum
10-2 mbar

120 t of He – 4 MCHF 
10’000 t of LN2 – 1.6 MCHF

10 2 mbar

CRYO
144 kW @4.5 K

Controls:
Networks fieldbuses
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144 kW @4.5 K Networks, fieldbuses, 
PLC, SCADA
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Cryostat Design & Heat Load ManagementCryostat Design & Heat Load Management

Heat inleaks• Heat inleaks
– Radiation 70 K shield, MLI
– Residual gas conduction Vacuum < 10-4 PaResidual gas conduction Vacuum < 10 Pa
– Solid conduction Non-metallic supports                     

Heat intercepts

• Joule heating
– Superconductor splices Resistance < a few nΩ

• Beam-induced heating
– Synchrotron radiation }

Beam image currents } 5 20 K beam screens– Beam image currents } 5-20 K beam screens
– Acceleration of photoelectrons }
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LHC 18 kW @ 4.5 K Cold Box
33 kW @ 50 K to 75 K 23 kW @ 4.6 K to 20 K 41 g/s liquefaction33 kW @ 50 K to 75 K       23 kW @ 4.6 K to 20 K       41 g/s liquefaction
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How to Specify an Efficient He RefrigeratorHow to Specify an Efficient He Refrigerator

I l d i l & i i i i d (10• Include capital & operating costs over amortization period (10 
years) in adjudication formula

• Operating costs dominated by electricityOpe at g costs do ated by e ect c ty
• Include externalities in electricity costs => 60 CHF/MWh

– distribution & transformation on site
h f– heat rejection in aerorefrigerants

• Establish shared incentive in the form of bonus/malus on 
measured vs. quoted electrical consumptionq p

• Break “high efficiency = high investment” pseudo-rule: for 
given (specified) output, a more efficient plant is smaller, 
resulting in lower investment (direct & indirect) as well asresulting in lower investment (direct & indirect) as well as 
cheaper operation
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How to make an efficient refrigerator
(Carnot cycle schematic)(Carnot cycle schematic)
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Widen the low temperature end of the cycle as shown in the T S diagram
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C.O.P. of Large Cryogenic Helium Refrigeratorsg g g
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Challenges of Power Refrigeration Below 2 Kg g

• Maintain saturation pressure < 2 kPa on cold source
=> compress GHe across pressure ratio of ~80
• Warm volumetric pumps are limited in capacity (10 g/s at 1kPa

i e 200 W at 1 8 K)i.e. 200 W at 1.8 K)
• Cold compressors handle gas with increased density but

- need non-lubricated, contact-less solutions,
- only acceptable with good isentropic efficiency (heat of compression 

is rejected at low temperature)

• Cold hydrodynamic compressors exhibit limited pressure ratio ofCold hydrodynamic compressors exhibit limited pressure ratio of 
~3 per stage

=> five stages in series to achieve overall pressure ratio
b l h h• Irreversibilities in VLP heat exchangers

- thermal: axial heat conduction, wall thermal resistance
- hydraulic: frictional pressure drop, uneven flow distribution
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C.O.P. of LHC 1.8 K Refrigeration Units

4.5 K refrigerator part 1.8 K refrigeration unit part
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Specific developments
S b li h t h HTS t l d R t ti hi S f t l ( h)Subcooling heat exchangers HTS current leads Rotating machine

(warm and cold)

Safety valves (quench)
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He Inventory of Large Cryogenic SystemsHe Inventory of Large Cryogenic Systems
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Specific Cost of Bulk He StorageSpecific Cost of Bulk He Storage

Type Pressure Density Dead Costyp
[MPa] 

y
[kg/m3] volume 

[%] 
[CHF/kg He] 

Gas Bag 0.1 0.16 0 300(1) 

MP Vessel 2 3 18 5-25 220-450MP Vessel 2 3.18 5 25 220 450

HP Vessel 20 29.4 0.5 500(2) 

Liquid 0.1 125 13 100-200(3) 
 
 

(1) Purity non preserved 
(2) Not including HP compressors 
(3) Not including reliquefier
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Liquid and gaseous storage tanks
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New project requirementsp j q
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ITER layout
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International Collaboration: Europe – Japan - Russia – Canada - USA – China - India
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Cryogenic capacity & Thermal loads

• LHe cryoplants: 60 kW equivalent @ 4.5 K
– Cooling of the superconducting magnet system (Toroidal andCooling of the superconducting magnet system (Toroidal and 

poloidal coils): 
• 31 kW @ 4.5 K including 13 kW of pulsed heat loads and 

6 kW of cold pump heat loads.
– Cooling of current leads:

• 100 g/s of LHe liquefaction
– Cooling of cryo-pumps with high regeneration frequency:

• 4 kW @ 4.5 K and 60 g/s of LHe liquefaction

• LN2 cryoplants: 1120 kW @ 80 Ky p @
– Thermal shielding:

• up to 830 kW @ 80 K during chamber baking
– LHe cryoplant pre-cooling:LHe cryoplant pre cooling:

• Up to 280 kW @ 80 K during normal operation

• Helium inventory: 20 t
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• Helium inventory: 20 t



LHC luminosity upgrade study

Inner triplet 
cooling architecture

RF cooling
architecture

Rs

cooling architecture
IT @ 2 K

architecture
RF @ 4.5 K

C CSurface

U d d

c
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Underground

• Cryoplants: Two 2 K cryoplants 

IT IT RF RFRF RF

c Underground refrigerator cold compressor box
y p y p

and one 4.5 K cryoplant
– Total installed power: 39 kW @ 4.5 K including  10 

kW @ 2 K
Size of largest plants: 16 kW @ 4 5 K including 5 kW C

Du

W t ti

Underground cryogenic distribution

Compound cryogenic transfer line

– Size of largest plants: 16 kW @ 4.5 K including 5 kW 
@ 2 K

• Distribution
– 3 distribution boxes and 500 m 

C

Rs

Warm compressor station

Surface refrigerator cold box

Ru Underground refrigerator cold box
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FAIR at GSI, Darmstadt 
(Germany)(Germany)

Facility for Antiproton & Ion Research

Complex of synchrotrons and storage rings using p y g g g
superconducting magnets

Production: up to 2012
Installation and commissioning: 2011 to 2013
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FAIR cryogenic systemFAIR cryogenic system

Refrigeration @ 4.4 K

REF 2

Heat load: 27.8 kW
Design capacity: 41.7 kW

DB 3
Length of transfer lines: 1.7 km
# of distribution boxes: 3

Compressors
REF 1

DB 2
# of distribution boxes: 3

Total helium inventory: 11 t
REF 1

DB 1
100 m

DB 1
Courtesy G. Moritz & M. Kauschke
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Conclusions
• Significant advances in cryogenic engineering of large 

helium – particularly helium II – systems.

• Technology industrially available.

• Newly approved projects (ITER, European X-FEL, FAIR)
are already demanding efforts from the cryogenic
omm nitcommunity.

• Large cryogenic refrigerators with multi-kW capacitiesg y g g p
down to 2 K as well as complex cryogenic distribution
systems will be required for future projects.

• There are many similarities between the different projects
devices, cooling methods and cryogenic refrigeration.
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devices, cooling methods and cryogenic refrigeration.
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