CRYOGENICS FOR SUPERCONDUCTING MAGNETS

L. Serio CERN, Geneva (Switzerland)

Thermomag
Paris, 19 -20 November 2007

Contents

- Role of cryogenics
- Helium as a cooling fluid
- Layout and requirements of large cryogenic systems
- Main equipments and features
 - Heat loads and cryostat design
 - Power refrigeration at 4.5 and 1.8 K
 - Specific developments:
 - » Current leads, heat exchangers, rotating machines, safety valves
 - Helium inventory management and storage
- Future perspective for large cryogenic systems
- Conclusions

Contents

- Role of cryogenics
- Helium as a cooling fluid
- Layout and requirements of large cryogenic systems
- Main equipments and features
 - Heat loads and cryostat design
 - Power refrigeration at 4.5 and 1.8 K
 - Specific developments:
 - » Current leads, heat exchangers, rotating machines, safety valves
 - Helium inventory management and storage
- Future perspective for large cryogenic systems
- Conclusions

Role of cryogenics

- Compactness through higher fields
 - superconducting bending and focussing magnets for circular accelerators.
 - superconducting acceleration cavities for linear accelerators
- Reducing of specific project cost
- Saving energy
 - in electromagnets
 - in acceleration cavities
- Improvement of environment conditions
 - cryogenic pumping
 - low resistive wall in high intensity accelerators

Critical current density of superconductors

Phase Diagram of Helium

Contents

- Role of cryogenics
- Helium as a cooling fluid
- Layout and requirements of large cryogenic systems
- Main equipments and features
 - Heat loads and cryostat design
 - Power refrigeration at 4.5 and 1.8 K
 - Specific developments:
 - » Current leads, heat exchangers, rotating machines, safety valves
 - Helium inventory management and storage
- Future perspective for large cryogenic systems
- Conclusions

Helium as a cooling fluid

Phase domain	Advantages	Drawbacks		
Saturated He I	Fixed temperature High heat transfer	Two-phase flow Boiling crisis		
Supercritical	Monophase Negative J-T effect	Non-isothermal Density wave instability		
He II	Low temperature High conductivity Low viscosity	Second-law cost Subatmospheric		

Superfluid Helium as a Magnet Coolant

- Temperature below 2.17 K
- Low bulk <u>viscosity</u>
- Very large <u>specific heat</u>
 - 10⁵ times that of the conductor per unit mass
 - 2 x 10³ times that of the conductor per unit volume
- Very high <u>thermal conductivity</u>
 - 10³ times that of cryogenic-grade OFHC copper
 - peaking at 1.9 K
 - still, insufficient for long-distance heat transport

Pressurised vs. Saturated Superfluid Helium

- + Mono-phase (pure liquid)
- + Magnet bath at atmospheric pressure
 - no air inleaks
 - higher heat capacity to the lambda line
- + Avoids bad <u>dielectric strength</u> of low-pressure gaseous helium
- Requires <u>additional heat exchanger</u> to saturated helium heat sink

LHC magnet string cooling scheme

Steady-state magnets cooling in LHC string

Magnet temperature in string upon current ramp

Contents

- Role of cryogenics
- Helium as a cooling fluid
- Layout and requirements of large cryogenic systems
- Main equipments and features
 - Heat loads and cryostat design
 - Power refrigeration at 4.5 and 1.8 K
 - Specific developments:
 - » Current leads, heat exchangers, rotating machines, safety valves
 - Helium inventory management and storage
- Future perspective for large cryogenic systems
- Conclusions

LHC infrastracture and 4.5 K refrigerators

LHC 1.8 K refrigeration units

L. Serio

Cryogenics for Superconducting Magnets

Thermomag, November 2007

LHC cryogenic distribution system

What does the LHC cryogenic system need?

Contents

- Role of cryogenics
- Helium as a cooling fluid
- Layout and requirements of large cryogenic systems
- Main equipments and features
 - Heat loads and cryostat design
 - Power refrigeration at 4.5 and 1.8 K
 - Specific developments:
 - » Current leads, heat exchangers, rotating machines, safety valves
 - Helium inventory management and storage
- Future perspective for large cryogenic systems
- Conclusions

Cryostat Design & Heat Load Management

Heat inleaks

Radiation70 K shield, MLI

Residual gas conduction
 Vacuum < 10⁻⁴ Pa

Solid conduction
 Non-metallic supports

Heat intercepts

Joule heating

- Superconductor splices Resistance < a few n Ω

Beam-induced heating

Synchrotron radiation }

Beam image currents} 5-20 K beam screens

Acceleration of photoelectrons }

LHC 18 kW @ 4.5 K Cold Box

33 kW @ 50 K to 75 K 23 kW @ 4.6 K to 20 K 41 g/s liquefaction

How to Specify an Efficient He Refrigerator

- Include capital & operating costs over amortization period (10 years) in adjudication formula
- Operating costs dominated by *electricity*
- Include externalities in electricity costs => 60 CHF/MWh
 - distribution & transformation on site
 - heat rejection in aerorefrigerants
- Establish shared incentive in the form of bonus/malus on measured vs. quoted electrical consumption
- Break "high efficiency = high investment" pseudo-rule: for given (specified) output, a more efficient plant is smaller, resulting in lower investment (direct & indirect) as well as cheaper operation

How to make an efficient refrigerator

(Carnot cycle schematic)

Widen the low-temperature end of the cycle as shown in the T-S diagram

C.O.P. of Large Cryogenic Helium Refrigerators

Challenges of Power Refrigeration Below 2 K

- Maintain saturation pressure < 2 kPa on cold source
- => compress GHe across pressure ratio of ~80
- Warm volumetric pumps are limited in capacity (10 g/s at 1kPa i.e. 200 W at 1.8 K)
- Cold compressors handle gas with increased density but
 - need *non-lubricated, contact-less* solutions,
 - only acceptable with *good isentropic efficiency* (heat of compression is rejected at low temperature)
- Cold hydrodynamic compressors exhibit limited pressure ratio of ~3 per stage
- => five stages in series to achieve overall pressure ratio
- Irreversibilities in VLP heat exchangers
 - thermal: axial heat conduction, wall thermal resistance
 - hydraulic: frictional pressure drop, uneven flow distribution

C.O.P. of LHC 1.8 K Refrigeration Units

Specific developments

Subcooling heat exchangers

HTS current leads

Rotating machine (warm and cold)

Safety valves (quench)

He Inventory of Large Cryogenic Systems

Specific Cost of Bulk He Storage

Type	Pressure [MPa]	Density [kg/m³]	Dead volume [%]	Cost [CHF/kg He]
Gas Bag	0.1	0.16	0	300 ⁽¹⁾
MP Vessel	2	3.18	5-25	220-450
HP Vessel	20	29.4	0.5	500(2)
Liquid	0.1	125	13	100-200(3)

- (1) Purity non preserved
- (2) Not including HP compressors
- (3) Not including reliquefier

Liquid and gaseous storage tanks

Contents

- Role of cryogenics
- Helium as a cooling fluid
- Layout and requirements of large cryogenic systems
- Main equipments and features
 - Heat loads and cryostat design
 - Power refrigeration at 4.5 and 1.8 K
 - Specific developments:
 - » Current leads, heat exchangers, rotating machines, safety valves
 - Helium inventory management and storage
- Future perspective for large cryogenic systems
- Conclusions

New project requirements

International Collaboration: Europe – Japan - Russia – Canada - USA – China - India

	ITER Legal	License to				Tokamak Assembly				First	
JIA	Entity	Constru	ct	Starts				Plasma			
	\checkmark					$\overline{}$					
2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017

Cryogenic capacity & Thermal loads

- LHe cryoplants: 60 kW equivalent @ 4.5 K
 - Cooling of the superconducting magnet system (Toroidal and poloidal coils):
 - 31 kW @ 4.5 K including 13 kW of pulsed heat loads and 6 kW of cold pump heat loads.
 - Cooling of current leads:
 - 100 g/s of LHe liquefaction
 - Cooling of cryo-pumps with high regeneration frequency:
 - 4 kW @ 4.5 K and 60 g/s of LHe liquefaction
- LN2 cryoplants: 1120 kW @ 80 K
 - Thermal shielding:
 - up to 830 kW @ 80 K during chamber baking
 - LHe cryoplant pre-cooling:
 - Up to 280 kW @ 80 K during normal operation
- Helium inventory: 20 t

LHC luminosity upgrade study

- Cryoplants: Two 2 K cryoplants and one 4.5 K cryoplant
 - Total installed power: 39 kW @ 4.5 K including 10 kW @ 2 K
 - Size of largest plants: 16 kW @ 4.5 K including 5 kW @ 2 K
- Distribution
 - 3 distribution boxes and 500 m of compound transfer lines

FAIR at GSI, Darmstadt (Germany)

Facility for Antiproton & Ion Research

Complex of synchrotrons and storage rings using superconducting magnets

Production: up to 2012

Installation and commissioning: 2011 to 2013

Operation: from 2012

Subproject	Numbers of sc magnets
SIS 100	449
SIS 300	444
HEBT	187
SuperFRS	180
CR	48
HESR	320
MTF	2*

FAIR cryogenic system

Contents

- Role of cryogenics
- Helium as a cooling fluid
- Layout and requirements of large cryogenic systems
- Main equipments and features
 - Heat loads and cryostat design
 - Power refrigeration at 4.5 and 1.8 K
 - Specific developments:
 - » Current leads, heat exchangers, rotating machines, safety valves
 - Helium inventory management and storage
- Future perspective for large cryogenic systems
- Conclusions

Conclusions

- Significant advances in cryogenic engineering of large helium – particularly helium II – systems.
- Technology industrially available.
- Newly approved projects (ITER, European X-FEL, FAIR) are already demanding efforts from the cryogenic community.
- Large cryogenic refrigerators with multi-kW capacities down to 2 K as well as complex cryogenic distribution systems will be required for future projects.
- There are many similarities between the different projects devices, cooling methods and cryogenic refrigeration.

Acknoledgements

- The work presented here is essentially that of the ACR group of the Accelerator Technology department
- Thanks to Ph. Lebrun and L. Tavian for some of the slides presented