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MOTIVATIONMOTIVATION
LHC beam loss protectionLHC beam loss protection

Optimise BLM threshold settings 
(gain the time and money)

Integrated luminosity 
(increase discovery potential of LHC

Reduce of quench number 
(reduce the number of thermodynamic shocks)
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Thermodynamics of magnet structureThermodynamics of magnet structure

Heat transport in the magnetsHeat transport in the magnets
Characteristic of superconducting coils



7THERMOMAG-07 D.Bocian

AB-BI-BL

Paris, November 19,  2007

Heat transport in the cableHeat transport in the cable
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1.9K / 4.5K

> 4.5K

Courtesy  C. Scheuerlein

MB magnet – inner layerRutheford type cable
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Heat transport in the coilHeat transport in the coil at 1.9Kat 1.9K

A heat transfer in the main dipole

Cold bore

inner layer outer layer 

Heat transfer from the conductor to the coldHeat transfer from the conductor to the cold
source defines the temperature marginsource defines the temperature margin
Electrical insulation is the largest thermalElectrical insulation is the largest thermal
barrier at 1.9 K against coolingbarrier at 1.9 K against cooling
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Heat transfer in the Heat transfer in the magnet magnet coilcoil

A sketch of the heat transfer in the magnet A sketch of the heat transfer in the magnet 
at at nominal operations (a)nominal operations (a) andand at quench limitat quench limit ((bb). ). 
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Thermodynamics of magnet structureThermodynamics of magnet structure

Heat transport in the magnets
Characteristic of superconducting coilsCharacteristic of superconducting coils
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Magnets coilMagnets coil

MB – arc magnet, Tb=1.9 K
HEAT FLOW

LIMITS
heat flow barriers

- cable insulation

- interlayer insulation (MQM)

- ground insulation

bath temperature 1.9 K

- Transition HeII → HeI:
helium channels is blocked = less effective 
heat evacuation due to the changing of heat
evacuation path

bath temperature 4.5K

- low temperature margin 
(worst case: MQM 0.45K)

- Helium channels does not play dominating
role (heat conduction of HeI and polyimide 
is similar at 4.5K) 

- less effective heat evacuation path compared
to the 1.9K magnets

MQ – arc magnet, Tb=1.9 K

MQM – LSS magnet, Tb=1.9/4.5 K MQY – LSS magnet, Tb=4.5 K
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Magnetic field distribution in the coilsMagnetic field distribution in the coils
MB

MQ

MQY

MQM
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Network ModelNetwork Model

Model construction
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Model ConstructionModel Construction
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Model ConstructionModel Construction
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Model ConstructionModel Construction

GROUND INSULATION

Courtesy  G. Kirby
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Helium in the Network ModelHelium in the Network Model

The volumes occupied by helium in the magnet are considered as:
-the narrow channels,
-semi-closed volumes = inefficient inlet of fresh helium.

The steady heat load heat up the helium in the semi- closed volumes:
-Helium temperature well above critical temperature  at Tb=4.5K
- Critical helium temperature reached already below the calculated quench limit
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Network ModelNetwork Model

Model constructionModel construction
Model of the superconducting cable and coils

Simulations
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““WETWET”” superconducting cable modesuperconducting cable modelllingling

μ-channel
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Cable modellingCable modelling
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Coil modelCoil modelllinging
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Network ModelNetwork Model

Model constructionModel construction
Model of the superconducting cable and coils

Simulations
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MB magnet MB magnet -- Quench limit simulationsQuench limit simulations
PRELIMINARY RESULTSPRELIMINARY RESULTS

Concentric beam loss profile
Temperature margin distriution, ΔT

Temperature in the coil, ΔTsimulation

Quench temperature map
ΔT-ΔTsimulation

1 - cold bore - factor = 50
2 - inner layer - factor = 6
3 - outer layer - factor = 1

Quench limit at 11850A
12 mW/cm3

Quench limit at 12840A
10 mW/cm3

x50x6x1

LHC Project Note 44 (2006)
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MB magnet MB magnet -- Quench limit simulationsQuench limit simulations
PRELIMINARY RESULTSPRELIMINARY RESULTS

Gaussian beam loss profile

FLUKA simulations
1 - factor = 1
2 - factor = 1.0/3.0
3 - factor = 0.4/3.0
4 - factor = 0.1/3.0
5 - factor = 0.03/3.0

Quench limit at 11850A
17 mW/cm3

Quench limit at 12840A
14 mW/cm3

Temperature margin distriution, ΔT

Temperature in the coil, ΔTsimulation

Quench temperature map
ΔT-ΔTsimulation
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Homogenous beam loss profile in MB magnetHomogenous beam loss profile in MB magnet
STUDY CASE STUDY CASE –– cold bore heated/not heated cold bore heated/not heated 

Beam loss profile with homogenous heat deposition Beam loss profile with homogenous heat deposition 

no heat load to the cold boreno heat load to the cold bore

10500 A  → Quench Limit ~ 150 mW/cm3

11850 A  → Quench Limit ~ 100 mW/cm3

12100 A  → Quench Limit ~ 72 mW/cm3

with heat load to the cold bore with heat load to the cold bore 

10500 A  → Quench Limit ~ 20 mW/cm3

11850 A  → Quench Limit ~ 14 mW/cm3

12840 A  → Quench Limit ~ 9 mW/cm3

A better cooling of the cold bore is needed to increase quench level 

This is effect of heat flow decrease 
in the helium channel around cold bore 
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MB magnet MB magnet -- Quench limit simulationsQuench limit simulations
PRELIMINARY RESULTSPRELIMINARY RESULTS
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Validation of the modelValidation of the model

Measurements in SM18
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Model validationModel validation

HEAT SOURCE

MODEL

EXPERIMENT

Heat source
- quench heaters

- inner heating apparatus

heat

heat

MAGNET

MODEL

MAGNET

measured 
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predicted 
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VALIDATION END
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MModel validationodel validation

Two methods of measurementTwo methods of measurement
Icoil =const, increase of IQH with a step of 0.1 A
IQH =const, slow ramp of Icoil up to the quench after 300 s of coil heating

3 MQM, 2 MQY, MQ and MB have been tested at 4.5 K 3 MQM, 2 MQY, MQ and MB have been tested at 4.5 K 
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Results of the measurements with QHResults of the measurements with QH
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Results of the measurements with QHResults of the measurements with QH
Relative differenceRelative difference
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The relative difference between measured and calculated quench values are ranging 
from 0.6 to 20 % for all measured types of superconducting magnets at 4.5 K.
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Internal Heating ApInternal Heating Appparatusaratus
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Internal Heating ApparatusInternal Heating Apparatus

Main Dipole - MB Main Quadrupole - MQ

MQM MQY
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Results of the measurements on MB with IHAResults of the measurements on MB with IHA

ADDITIONAL MEASUREMENTS ANALYSES ARE ON GOING

MB magnet - inner heating apparatus
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Summary and outlookSummary and outlook

Quench limit for the Quench limit for the „„realreal”” beam loss depends on the beam loss beam loss depends on the beam loss 
profiles profiles 

Two most realistic beam loss scenarios are considered: 
Gaussian and concentric (factor ~2 difference)

The The validation of the model withvalidation of the model with MQM, MQY, MQ and MB magnet MQM, MQY, MQ and MB magnet 
at 4.5K at 4.5K were performed successfully.were performed successfully.

The agreement between measurements and simulations is in worse case of 
order of 20%.

The first measurements on MB at 1.9K are very successfulThe first measurements on MB at 1.9K are very successful
Internal Heating Apparatus allows to quench MB magnet 
in the range from 1kA to 12 kA.

The validation of the model at 1.9 K is not completedThe validation of the model at 1.9 K is not completed
Only measurements on MB magnet were performed
Model is not yet tunned at 1.9K - µ-channels

Quench level for the typical beam losses scenarios are calculateQuench level for the typical beam losses scenarios are calculated d ––
preliminary resultspreliminary results
TTransient loss simulationsransient loss simulations and validations with measurements?and validations with measurements?
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Motivation IMotivation I
Gain time by optimised threshold settingsGain time by optimised threshold settings

ScenariosScenarios
1. Threshold too high ⇒ quench of the magnets

(ideally: no beam loss induced quenches)
2. Threshold too low  ⇒ beam abort 

Scenario 1
After 3 quenches change threshold value (by trial and error) 

⇒ lost time: 3 recovery times (minimum 3x5h=15 hours)

Scenario 2
After 3 aborts change threshold value (by trial and error) 

⇒ lost time: 3 false aborts (3x2h=6 hours)

9 different main magnets family 9 different main magnets family ⇒⇒
⇒ ~10 kCHf/hour of LHC operation
⇒ assuming one threshold setting change per magnet

135 h makes 1.35*106 CHF

MB, MQ, MQM @ 1.9K, MQM @ 4.5K, MQY
MQTL
MQXA, MQXB, MBR
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Heat conductivityHeat conductivity
Copper properties
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