γ FROM LOOPS

Luca Silvestrini INFN, Rome

Introduction γ from two-body $B_{(s)}$ decays γ from three-body $B_{(s)}$ decays Conclusions

INTRODUCTION

- The extraction of γ from penguin decays is sensitive to NP
- Some knowledge of hadronic parameters is necessary
- Several strategies based on hadronic models and/or flavour symmetries
- Quantifying hadronic uncertanties is the main issue

MAKING GOOD USE OF $B_s \rightarrow K^+K^-$

- $A(B_d \rightarrow \pi^+\pi^-) = e^{i\gamma} T Pe^{i\delta} = C(e^{i\gamma} de^{i\delta})$
- $A(B_d \rightarrow \pi^0 \pi^0) = (e^{i\gamma} T_0 e^{i\delta 0} + P e^{i\delta})/\sqrt{2}$
- $A(B^+ \rightarrow \pi^+\pi^0) = A(B_d \rightarrow \pi^+\pi^-)/\sqrt{2} + A(B_d \rightarrow \pi^0\pi^0)$
- Gronau-London: use the three BR's, S_{+-} , C_{+-} and C_{00} to determine T, T_0 , δ_0 , P, δ and γ (given 2 β)
- Discrete ambiguities, singular solutions

- $A(B_s \rightarrow K^+K^-) = 1/\lambda (\lambda^2 e^{i\gamma} T' + P' e^{i\delta'}) =$
 - $= \lambda C' (e^{i\gamma} + 1/\lambda^2 d' e^{i\delta'})$
- C' = C, d' = d and $\delta' = \delta$ in the U-spin limit
- U-spin breaking largely cancels in d'/d
- Fleischer: Use BR, S and C in $\pi^+\pi^-$ together with U-spin to extract T, P, δ and γ (given 2 β and 2 β_s). Fleischer 99; Fleischer & Matias 02; London, Matias & Virto 05; Baek, London, Matias & Virto 05; Baek, London, Matias & Virto 06; Fleischer 07; Fleischer & Knegjens 10;...
- Pros: allows "LHCb only" determination of γ
- Cons: strongly depends on SU(3) breaking, can't be combined with GL L. Silvestrini

- Best strategy: combine $B_s \rightarrow K^*K^-$ with GL B $\rightarrow \pi\pi$ to obtain an improved determination of γ
- Present experimental input:

Channel	$BR \times 10^6$	S(%)	A(=-C)(%)	corr.	ref.
$B_d \to \pi^+ \pi^-$	5.11 ± 0.22	-65 ± 7	38 ± 6	0.08	HFAG
$B_d \to \pi^+ \pi^-$	—	$-56 \pm 17 \pm 3$	$11\pm21\pm3$	-0.34	LHCb
$B_d \to \pi^0 \pi^0$	1.91 ± 0.23	_	43 ± 24	—	HFAG
$B^+ \to \pi^+ \pi^0$	5.48 ± 0.35	_	—	—	HFAG
$B_s \to K^+ K^-$	25.4 ± 3.7	$17\pm18\pm5$	$2\pm18\pm4$	-0.1	HFAG, LHCb

plus $sin 2\beta = 0.679 \pm 0.024$, $sin 2\beta_s = 0.\pm 0.101 \pm 0.027$

• VERY PRELIMINARY RESULTS, work in progress...

Gronau-London only: γ = (68 ± 15)° [53, 83]° @ 95%

Even for 90% SU(3) breaking $B_s \rightarrow K^+K^$ still plays a relevant role in cutting the small CE gamma region

68% prob. region for GL only and GL+KK

$\gamma \text{FROM B}_{d} \rightarrow \text{K}^{*}\pi$

• Idea: isolate tree decay amplitude using a Dalitz plot analysis and extract its phase

Ciuchini, Pierini & L.S. 06; Gronau, Pirjol, Soni & Zupan 06, 07; ...

$$\begin{aligned} A(K^{*+}\pi^{-}) &= V_{tb}^{*}V_{ts}P_{1} - V_{ub}^{*}V_{us}(E_{1} - P_{1}^{\text{GIM}}) \\ \sqrt{2}A(K^{*0}\pi^{0}) &= -V_{tb}^{*}V_{ts}P_{1} - V_{ub}^{*}V_{us}(E_{2} + P_{1}^{\text{GIM}}) \\ \sqrt{2}A(K^{*+}\pi^{0}) &= V_{tb}^{*}V_{ts}P_{1} \\ &- V_{ub}^{*}V_{us}(E_{1} + E_{2} + A_{1} - P_{1}^{\text{GIM}}) \\ A(K^{*0}\pi^{+}) &= -V_{tb}^{*}V_{ts}P_{1} + V_{ub}^{*}V_{us}(A_{1} - P_{1}^{\text{GIM}}) \end{aligned}$$

Neglecting EWP one has

$$A^{0} = A(K^{*+}\pi^{-}) + \sqrt{2}A(K^{*0}\pi^{0})$$

= $-V_{ub}^{*}V_{us}(E_{1} + E_{2}),$
 $\bar{A}^{0} = A(K^{*-}\pi^{+}) + \sqrt{2}A(\bar{K}^{*0}\pi^{0})$ $R^{0} = \frac{\bar{A}^{0}}{A^{0}} = \frac{V_{ub}V_{us}^{*}}{V_{ub}^{*}V_{us}} = e^{-2i\gamma}$
= $-V_{ub}V_{us}^{*}(E_{1} + E_{2}),$

$$A^{+} = A(K^{*0}\pi^{+}) + \sqrt{2}A(K^{*+}\pi^{0})$$

= $-V_{ub}^{*}V_{us}(E_{1} + E_{2}),$
$$A^{-} = A(\bar{K}^{*0}\pi^{-}) + \sqrt{2}A(K^{*-}\pi^{0})$$

= $-V_{ub}V_{us}^{*}(E_{1} + E_{2}),$
$$R^{\mp} = \frac{A^{-}}{A^{+}} = e^{-2i\gamma}$$

Main issues:

- how to measure the relative phase of amplitudes entering different Dalitz plots or not directly interfering
- how to take into account effects of EWP
- original proposal requires measuring Dalitz plots with π^0 s and time-dependent $K_s \pi^+\pi^- \Rightarrow$ hard for LHCb

- Bediaga et al. '07 suggest to use K[±]π⁺π⁻ and time-integrated K_sπ⁺π⁻, fixing the relative phases of Dalitz plots using Kχ_c decays. Additional assumptions needed:
 - interference with $K\chi_c$ effective in determining the phase of $K^*\pi$ amplitudes

- $K^{*0}\pi^+$ is dominated by P_1

Must still correct for EWP effects

- If we could afford a π^0 , the simplest strategy would be as follows:
 - assume $K^{*0}\pi^{+}$ is dominated by $P_1 \Rightarrow No$ direct CPV in $K^{*0}\pi^{+}$
 - fix arg $A(K^{*0}\pi^{+})$ = arg $A(K^{*0}\pi^{-})$ = 0 and connect the $K_{s}\pi^{+}\pi^{0}$ and $K_{s}\pi^{-}\pi^{0}$ Dalitz plots

- extract A^+ , A^- , and γ

• The assumption of P₁ dominance can be relaxed by using $K\chi_c$ to fix the relative phase of $K_s \pi^+ \pi^0$ and $K_s \pi^- \pi^0$ Dalitz plots

$\gamma \, \text{FROM B}_{_{\text{S}}} \to \text{K}^{*} \pi$

- Quark level transition is $b \rightarrow d \overline{q} q (q=u,d)$
 - tree contribution ($V_{ub} V_{ud}^*$) is not Cabibbo suppressed w.r.t. $V_{tb} V_{td}^*$
 - electroweak penguins are negligible
- $A(B_s \rightarrow K^{*-}\pi^{+})$ and $A(B_s \rightarrow K^{*0}\pi^{0})$ can be extracted from $B_s \rightarrow K^{-}\pi^{+}\pi^{0}$ Dalitz plot, and the conjugate amplitudes from $B_s \rightarrow K^{+}\pi^{-}\pi^{0}$

Ciuchini, Pierini & L.S. 06; Gronau, Pirjol, Soni & Zupan 06, 07

- To obtain the relative phase of the $B_s \rightarrow K^ \pi^+\pi^0$ and $\overline{B}_s \rightarrow K^+\pi^-\pi^0$ Dalitz plots, use the $B_s \rightarrow K_s \pi^+\pi^-$ Dalitz plot, exploiting interference of $K^{*+}\pi^-$ and $K^{*-}\pi^+$ with $\rho^0 K_s$ and other $\pi^+\pi^-$ resonances.
- At hadron colliders, the sensitivity is given by the Re $\lambda \Delta \Gamma_s / \Gamma_s$ term in the timeintegrated rate (λ =q/p \overline{A}/A).

CONCLUSIONS

- $B_s \rightarrow K^*K^-$ can be combined with standard GL analysis to improve considerably the determination of γ , even allowing for sizable SU(3) breaking effects
- The consistency of GL with $B_s^{} \to K^*K^-$ is a test of NP in $b \to s$ penguins

CONCLUSIONS - II

- Tree-level amplitudes can be successfully isolated in $B_{(s)}\to K^*\pi$ decays using Dalitz analyses
- While optimal strategies require Dalitz plots with $\pi^{o}s$, first attempts could be made with $K^{\pm}\pi^{+}\pi^{-}and K_{s}\pi^{+}\pi^{-}only$