

LHCb results on hadronic penguin decays

April 16th 2012

Outline

- Introduction
- Observation of $B_s \rightarrow K^{*0}\overline{K^{*0}}$
- В_s **→**фф
 - Polarization amplitudes
 - Triple product asymmetries
- Prospects + outlook

Introduction

B_d hadronic penguin decays studied in several modes at the B-factories

Open issues

- $\sin 2\beta$ in penguin decays (e.g. $B_d \rightarrow \phi K_s$) versus tree (e.g. $B_d \rightarrow J/\psi K_s$)
- Polarization puzzle: Expect from V-A nature of the weak interaction, that $f_L >> f_T$, but observe (e.g. in $B_d \rightarrow \phi K^*$) $f_L \sim f_T$

Hadronic trigger capability at LHCb allows to continue this program + extend to the B_s sector

Observation of $B_s \rightarrow K^{*0}K^{*0}$

35 pb⁻¹ of data taken in 2010

$$49.8 \pm 7.5 \ B_s \to K^+ \pi^- K^- \pi^+$$
 candidates

Dominated by
$$B_s \to K^{*0} \overline{K}^{*0}$$

Longitudinal polarization fraction

$$f_L = 0.31 \pm 0.12(stat) \pm 0.04(syst)$$

Branching ratio measured to be

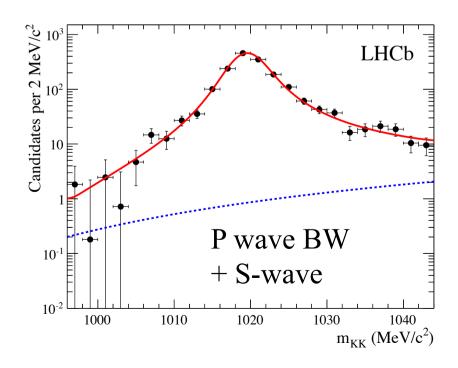
LHCB-PAPER-2011-012 (arXiv: 1111.4183)

 $BR(B_s \to K^{*0}\overline{K}^{*0}) = (2.81 \pm 0.46(stat) \pm 0.45(syst) \pm 0.34(f_s/f_d)) \times 10^{-5}$

$B_s \rightarrow \varphi \varphi$

- Golden mode for measurement of ' ϕ_s ' in hadronic penguin decays (e.g. see Raidal, arXiv, hep-ph/0209091)
 - In Standard Model cancellation between decay + mixing phases ' φ_s ' is negligible. Non zero measurement \rightarrow New Physics
- Long term goal time dependent angular fit to measure ' ϕ_s '
- First studies: untagged time integrated angular analysis to extract polarization amplitudes and triple product asymmetries

$B_s \rightarrow \varphi \varphi$



Full 2011 dataset (~1 fb⁻¹)

LHCb-PAPER-2012-004 arXiv:1204.1620

- 801 ± 29 candidates with excellent signal to background ratio
- S- wave component in \pm 25 MeV window around ϕ mass \sim 1.3 %

Polarization Amplitudes

- Three polarization amplitudes A_{0} , $A_{//}$ (CP-even), A_{\perp} (CP-odd)
- Measure using untagged time-integrated angular fit to helicity angles: kaon decay angles (θ_1, θ_2) and the angle between the two decay planes (ϕ)

- Assume $\phi_s = 0$ is zero
- Γ_s and $\Delta\Gamma_s$ from LHCb B_s \rightarrow J/ $\psi \varphi$ measurement (PRL.108 101803 2012) input as Gaussian constraints

Polarization Amplitudes

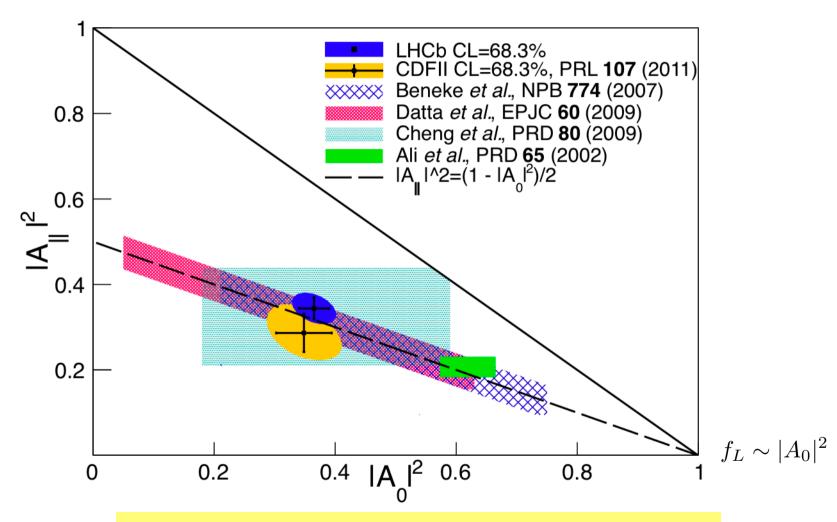
Untagged, time integrated angular fit to helicity angles $(\Phi, \cos\theta_1, \cos\theta_2)$ to extract polarization amplitudes + strong phase

$$|A_0|^2 = 0.365 \pm 0.022 \text{ (stat)} \pm 0.012 \text{ (syst)}$$

 $|A_\perp|^2 = 0.291 \pm 0.024 \text{ (stat)} \pm 0.010 \text{ (syst)}$

+ strong phase
$$\delta_{\parallel} \equiv \delta_2 - \delta_1 = \arg(A_{\parallel}/A_0)$$

$$\cos(\delta_{\parallel}) = -0.844 \pm 0.068 \,(\text{stat}) \pm 0.029 \,(\text{syst})$$



Polarization Amplitudes

Good agreement with CDF measurements and Latest pQCD predictions

Triple Product Asymmetries

Datta + London: arXiv:hep-ph/0303159

Gronau + Rosner: arXiv:hep-ph/11071232v2

CP-odd/CP-even interference terms $Im(A_0^*A_{\perp}) + Im(A_{//}^*A_{\perp})$ are proportional to Triple products + are odd under time reversal

Sign according to $\cos \theta_1 \cos \theta_2$

$$\nabla \qquad \sin \Phi = (\hat{n}_{V_1} \times \hat{n}_{V_2}) \cdot \hat{p}_{V_1}
U \qquad \sin 2\Phi = 2(\hat{n}_{V_1} \cdot \hat{n}_{V_2})(\hat{n}_{V_1} \times \hat{n}_{V_2}) \cdot \hat{p}_{V_1}$$

- Non-zero TPs: T violation + hence CP violation
- Extraction of TP asymmetries simple counting exercise:

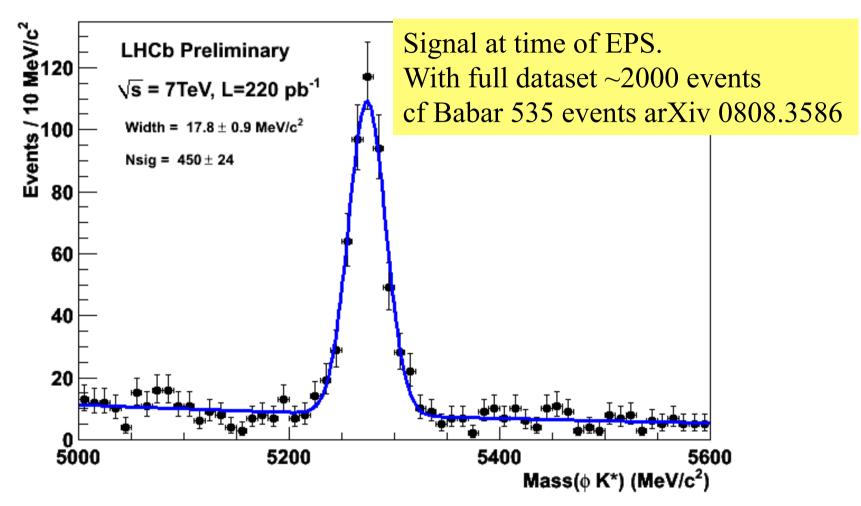
$$A_U = \frac{\Gamma(U > 0) - \Gamma(U < 0)}{\Gamma(U > 0) + \Gamma(U < 0)} \quad A_V = \frac{\Gamma(V > 0) - \Gamma(V < 0)}{\Gamma(V > 0) + \Gamma(V < 0)}$$

• Expect to be zero in the Standard Model

Triple Product Asymmetries

Results are consistent with CDF and zero CP violation

Outlook



- Those are our public results on hadronic penguins
- With the 2011+2012 dataset many more analyses going on and there is a lot more to come in the next months:
 - Generic trigger lines that pick up hadronic B decays with good efficiency
 - Offline streaming selecting B^+ , B_d , B_s decays to two light resonances η , η' , K^* , ρ , ω f^0 , φ
- For the ϕX family we can know explore similar modes to those studied for the $J/\psi X$ family with 2010 data

$B_d \rightarrow \phi K^*$

Ongoing: measurements of the polarization amplitudes, Triple Products and CP asymmetries, ...

ϕ_s in $B_s \rightarrow \phi \phi$

- Most of the tools to perform first measurement of in place and we are 'almost' ready to go:
 - Simulation + upgrade studies before first data-taking
 - Experience from $B_s \rightarrow J/\psi \phi$
 - $B_s \rightarrow \phi \phi$ PDFs, fitters exercised with untagged studies for amplitudes
- First measurement will be proof of principle. With 2011 + 2012 data precision of \sim 0.3 rad can be achieved
 - Similar precision likely for $B_s \rightarrow K^{*0} \overline{K^{*0}}$
- With ~5 fb⁻¹ collected with current LHCb up to 2018 expect precision of 0.08 rad
- Key channel for the upgrade: 50 fb⁻¹ +improved hadron trigger, precision of 0.02 rad

Summary

- With 2010 dataset made first observation of $B_s \rightarrow K^{*0} \overline{K^{*0}}$
 - Similar studies to $B_s \rightarrow \phi \phi$ possible for this channel with 2011 dataset
- 2011 dataset world's most precise measurements of polarization amplitudes and Triple Product asymmetries in $B_s \rightarrow \varphi \varphi$
- Expect many more measurements to come with 2011 (+2012) dataset
- Hadronic penguin decays (e.g. $B_s \rightarrow \varphi \varphi$) key measurements for the LHCb upgrade
- New ideas/predictions to exploit our large dataset welcome!

Backup

Polarization Systematics

Source	$ A_0 ^2$	$ A_{\perp} ^2$	$ A_{ } ^2$	$\cos \delta_{\parallel}$
S-wave	0.007	0.005	0.012	0.001
Time Acceptance	0.006	0.006	0.002	0.007
Angular Acceptance	0.007	0.006	0.006	0.028
Trigger category	0.003	0.002	0.001	0.004
Background model	0.001	_	0.001	0.003
Total	0.012	0.010	0.014	0.029

Triple Product Systematics

Source	A_U	A_V	Chosen uncertainty
Angular acceptance	0.009	0.006	0.009
Decay time acceptance	0.006	0.014	0.014
Fit model	0.004	0.005	0.005
Total		1	0.018

Decay Rate

$$\frac{d^4\Gamma}{d\cos\theta_1 d\cos\theta_2 d\Phi dt} \propto \sum_{n=1}^6 K_n(t) f_n(\theta_1,\theta_2,\Phi) \qquad f_1(\theta_1,\theta_2,\Phi) = 4\cos^2\theta_1\cos^2\theta_2 \\ f_2(\theta_1,\theta_2,\Phi) = \sin^2\theta_1\sin^2\theta_2(1+\cos2\Phi) \\ f_3(\theta_1,\theta_2,\Phi) = \sin^2\theta_1\sin^2\theta_2(1-\cos2\Phi) \\ f_4(\theta_1,\theta_2,\Phi) = -2\sin^2\theta_1\sin^2\theta_2\sin2\Phi \\ f_5(\theta_1,\theta_2,\Phi) = -\sqrt{2}\sin2\theta_1\sin2\theta_2\cos\Phi \\ f_6(\theta_1,\theta_2,\Phi) = -\sqrt{2}\sin2\theta_1\sin2\theta_2\sin\Phi. \\ K_1(t) = \frac{1}{2}A_0^2[(1+\cos\phi_s)e^{-\Gamma_L t} + (1-\cos\phi_s)e^{-\Gamma_H t} \pm 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s] \\ K_2(t) = \frac{1}{2}A_{\parallel}^2[(1+\cos\phi_s)e^{-\Gamma_L t} + (1-\cos\phi_s)e^{-\Gamma_H t} \pm 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s] \\ K_3(t) = \frac{1}{2}A_{\parallel}^2[(1-\cos\phi_s)e^{-\Gamma_L t} + (1-\cos\phi_s)e^{-\Gamma_H t} \pm 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s] \\ K_4(t) = |A| ||A_{\perp}||\pm e^{-\Gamma_s t} \{\sin\delta_1\cos(\Delta m_s t) - \cos\delta_1\sin(\Delta m_s t)\cos\phi_s\} \\ -\frac{1}{2}(e^{-\Gamma_H t} - e^{-\Gamma_L t})\cos\delta_1\sin\phi_s] \\ K_5(t) = \frac{1}{2}|A_0||A_{\parallel}|\cos(\delta_2 - \delta_1) \\ [(1+\cos\phi_s)e^{-\Gamma_L t} + (1-\cos\phi_s)e^{-\Gamma_H t} \pm 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s] \\ K_6(t) = |A_0||A_{\perp}||\pm e^{-\Gamma_s t} \{\sin\delta_2\cos(\Delta m_s t) - \cos\delta_2\sin(\Delta m_s t)\cos\phi_s\} \\ -\frac{1}{2}(e^{-\Gamma_H t} - e^{-\Gamma_L t})\cos\delta_2\sin\phi_s] \\ +\frac{1}{2}(e^{-\Gamma_H t} - e^{-\Gamma_L t})\cos\delta_2\sin\phi_s]$$

Decay Rate

$$K_{1} = A_{0}^{2}\tau_{L}$$
 $K_{2} = A_{\parallel}^{2}\tau_{L}$
 $K_{3} = A_{\perp}^{2}\tau_{H}$
 $K_{4} = 0$
 $K_{5} = |A_{0}||A_{\perp}|\cos(\delta_{\parallel})\tau_{L}$
 $K_{6} = 0$