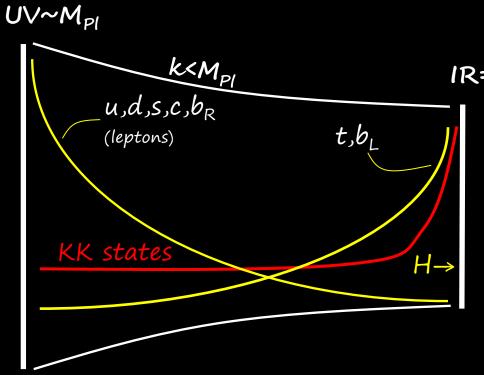
Two new physics paths to charm CP asymmetry

Cédric Delaunay CERN-TH

[hep-ph/soon.!?!?]² with
J.F. Kamenik, G. Perez, L. Randall
&
L. da Rold, C. Grojean, G. Perez


Introduction

- LHCb+CDF: $\Delta a_{CP} = (-0.67 \pm 0.16)\% = 0 4.20 = SM??$
- if charm CPV is not SM-like, then 2 NP routes:
 - \rightarrow $(uc)_{V+A}(qq)_{V+A}$ with $\bigwedge_{4f} \approx 15 \text{ TeV} \mid \text{model dependent DDbar issue}$ Isidori et al '11
 - $\rightarrow g_s m_c u_L \sigma_{\mu\nu} G^{\mu\nu} c_R$ with $\Lambda_8 \approx 20 \text{TeV} \mid$ no DDbar thanks to chirality flip Grossman, Kagan, Nir 'o6
- NP must solve the hierarchy problem
 - N_{susy}>O : see Giudice, Isidori & Paradisi '12 & Hiller, Hochberg & Nir '12
 - N_{susy} =0: warped extra dimension (or 4D composite models)
- ∧₈~20TeV arises in flavor anarchic strong TeV dynamics
 → implications?
- $\Lambda_{4f} \sim 15 \text{ TeV}$ possible if light RH-quarks are composite \rightarrow does it pass present dijet constraints?

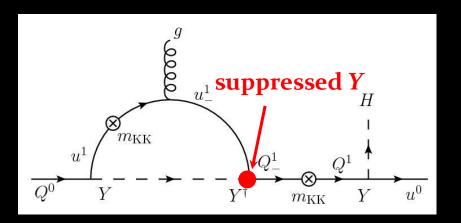
The dipole way to charm CPV RS + flavor anarchy

Warped essentials

RS'99: « Hierarchy problem is solved in AdS5 bckg: $ds^2 = e^{-2ky} dx^2 - dy^2$ »

IR=M_{Pl} e⁻³⁰ ~TeV

- EWPTs → m_{KK}>3-4TeV custodial symmetry @work
- SM flavor puzzle addressed
- NP flavor problem almost solved RSGIM @work, yet:


$$Im[e_K] + Im[e'/e] \rightarrow m_{KK} > 5 TeV$$

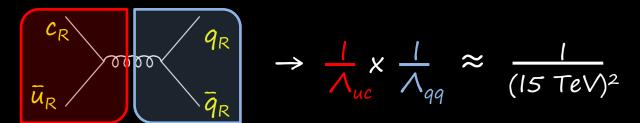
• a way out (supported by Daya bay): down alignment, but up anarchy

Charm CPV from a chromo-dipole operator

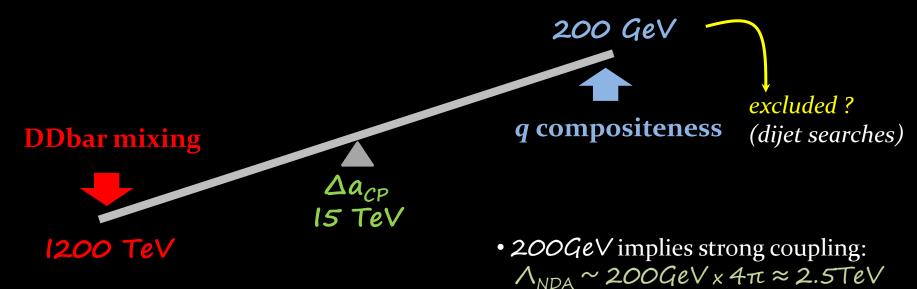
CD, Kamenik, Perez & Randall '12

- Flavor changing dipole induced at 1-loop by Yukawa int.
- Bulk Higgs: «wrong» chirality KK fermions dominate

$$C_8 = \frac{\lambda_c Y_5^2}{16\pi^2 m_{KK}^2} O_\beta H \text{ overlap corr.} \approx 0.1 \text{ for } \beta = 0$$


$$\rightarrow \Delta a_{CP} = 0.6\%$$
 for $m_{KK} = 3 \text{ TeV}$, $Y_s = 6$

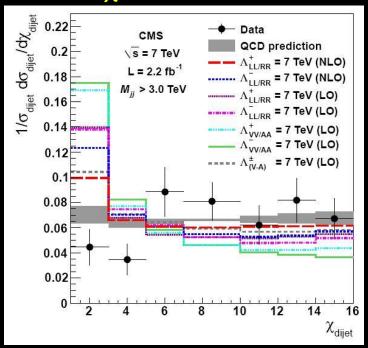
- First implications:
 - overlap suppression requires a larger Y than in generic 4D duals
 → DDbar mixing in 5D is typically more suppressed
 - − gluon coupling is flavor blind → $a_{CP}(KK) = a_{CP}(\pi\pi)$


The 4-fermion way to charm CPV RH quarks compositeness

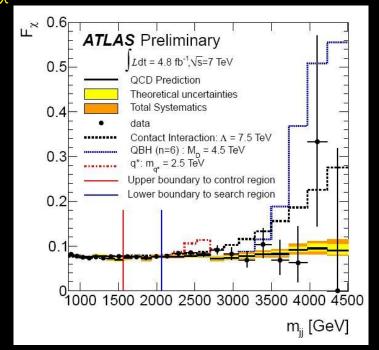
Charm CPV from composite RH light quarks

• for S-channel mediated *ubar* $c \rightarrow qbar q$ transitions:

• The D meson see-saw: $\Lambda_{\Delta c=2} \approx 1200 \text{TeV} \gg \Lambda_{\Delta c=1} \approx 15 \text{TeV}$

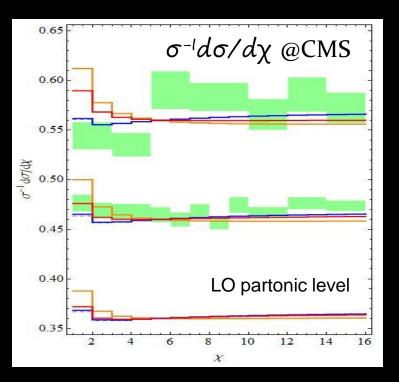

• q=u,d excluded $\Lambda_{uu} \geq 3 \text{TeV}$

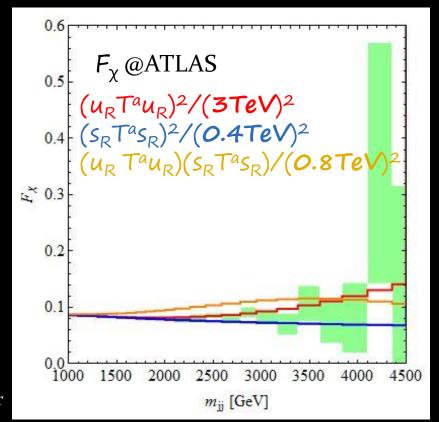
 \rightarrow what if q=s?


Dijet searches & compositeness scale

- Dijet searches sensitive to 4F operators involving light quarks
- strategy:
 - QCD mostly produces forward jets through the exchange of massless particles in t-channel
 - Contact interactions produce more isotropic jets → dominates @low y
 - construct angular variable $\chi = e \times p(2y)$ to exploit the different kin.

$\sigma^{-1}d\sigma/d\chi$ from CMS


$F_{\gamma} = \sigma(y < 0.6) / \sigma(y < 1.7)$ from ATLAS



Light quark compositeness vs. dijet searches

see also Domenech, Pomarol & Sera 12

Δa_{CP} from s-channel FCNC \rightarrow (sbar_R s_R)²/(200GeV)²

- color octet favored bounds for singlet is √3 stronger
- negative Wilson coefficient induced

mild tension but:

- NP matrix elem. for charm direct CPV are unknown
- NLO QCD corr. applied to NP weakens bounds by o(20%)
- mostly strange jets are produced

Conclusions/Outlook

- warped Xdim + up-type flavor anarchy induces Q_8 with the right size to explain charm CPV with $a_{CP}(KK) = a_{CP}(\pi\pi)$
- composite s_R opens a 4F possibility for Δa_{CP} OK with dijets @LHC and predicts $a_{CP}(KK) \gg a_{CP}(\pi\pi)$
- other ways to distinguish between the 2 NP routes:
 - CPV in radiative D decays from Q_8 induced Q_7 (see Gino's talk)
 - strange dijets @LHC should pop up from a 4F operator
- naturalness + Δa_{CP} + top A_{FB} hints for an intriguing paradigm: partial compositeness + RH composite quarks