Very rare decay searches at LHCb

Implications of LHCb measurements and future prospects

April 16th, 2012

Xabier Cid Vidal

Universidade de Santiago de Compostela, on behalf of the LHCb collaboration
Introduction

LHCb very rare decays current searches
- \(B_{d,s} \rightarrow \mu^+\mu^- \)
- \(B_{d,s} \rightarrow \mu^+\mu^-\mu^+\mu^- \)
- Searches for Majorana neutrinos in \(B^- \) decays
- \(\tau^\pm \rightarrow \mu^+\mu^-\mu^\pm \)
- \(K_s \rightarrow \mu^+\mu^- \)

Prospects for other channels

Conclusions
Introduction
Introduction

- General concept of **very rare decays** in LHCb:
 - Access NP through new virtual particles entering in the loop: **indirect search of NP**, accessing higher energy scales!
 - Very relevant test of SM predictions, for extremely small BR.

- Searches are experimentally similar:
 - **Control channels** used to avoid dependence on simulation.
 - **Geometrical properties** combined in MVA to classify the events.
 - **Use of normalization channels** (with similar geometry/trigger) to convert observed number of events in BR, without use of absolute luminosity.
 - **Blind** analyses (signal region not looked at until the analyses are frozen)
 - Produce results which **constraint the phase space of NP**!
LHCb very rare decays current searches

\[\rightarrow B_{d,s} \rightarrow \mu^+\mu^- \]
B_{d,s} \rightarrow \mu^+\mu^-- Introduction

- B_{d,s} \rightarrow \mu^+\mu^- decays are very suppressed in the SM:
 - BR(B_s \rightarrow \mu\mu) = (3.2 \pm 0.2) \times 10^{-9}
 - BR(B_d \rightarrow \mu\mu) = (0.10 \pm 0.01) \times 10^{-9}

- They turn out to be, however, very sensitive to scalar and pseudo-scalar operators, so sensitive to NP.

Selection: apply some cuts on all $\mu\mu$ candidates to remove most of the background.

Classify each event using two variables (bins in a 2D parameter space):
- **Geometrical properties** (combined in Boosted Decision Tree)
- **Invariant Mass**

Treat each bin as an independent experiment. Results combined using CL_s method (Modified Frequentist Approach)

Use of control channels to calibrate and normalize (normalization to $B^+\rightarrow J/\psi K^+$, $B_d\rightarrow K\pi$ and $B_s\rightarrow J/\psi \Phi$, give compatible results)
Results in 1 fb^{-1} consistent with SM

- Data
- Error in sum of all expected background contributions (hatched area)

Results in most sensitive region of BDT

SM signal
Combinatorial bkg.

B_{d,s} \rightarrow h^+h^- misID
Crossfeed between channels

- **B_{d,s} \rightarrow \mu^+\mu^- - Mass projections**
- **B_{0} \rightarrow \mu\mu**
- **B_{0_s} \rightarrow \mu\mu**
B_{d,s} \to \mu^+\mu^- - Results

- **Limits 1 fb^{-1} @ 95% CL (WB)**
 - $\text{BR}(B_s \to \mu^+\mu^-) < 4.5 \times 10^{-9}$
 - $\text{BR}(B_d \to \mu^+\mu^-) < 8.1 \times 10^{-10}$

- **BR(B_s \to \mu^+\mu^-) estimate:**
 - $\text{BR}(B_s \to \mu^+\mu^-) = (0.8^{+1.8}_{-1.3}) \times 10^{-9}$

NP could still be there, suppressing $B_s \to \mu^+\mu^-$. With the 2012 data, we could be able to find a 3σ evidence if $\text{BR}(B_s \to \mu^+\mu^-)$ is SM.

For the theory implications of the result, see talks by G. Isidori and N. Mahmoudi.
LHCb very rare decays current searches

$B_{d,s} \rightarrow \mu^+\mu^-\mu^+\mu^-$
SM process: $B_{d,s} \rightarrow \mu^+\mu^-\gamma^*$ with $\gamma^* \rightarrow \mu^+\mu^-$
- Non-resonant BR predicted to be $10^{-10} - 10^{-11}$

Decay sensitive to NP:
- eg sGoldstinos ($B_s \rightarrow S(\mu^+\mu^-)P(\mu^+\mu^-)$)

Resonant decay mode
$B_s \rightarrow J/\psi(\mu^+\mu^-)\Phi(\mu^+\mu^-)$ with expected BR at the level of $(2.3\pm0.9) \times 10^{-8}$.
Observed yield consistent with expectation.

Cut based analysis, normalization to $B_d \rightarrow J/\psi K^*$. Non-resonant peaking backgrounds kept under control
$B_{d,s} \rightarrow \mu^+\mu^-\mu^+\mu^-$ - Results

- Number of observed events in 1 fb$^{-1}$ consistent with background expectation

- Set a limit on signal events using the CL$_s$ method (as in $B_s \rightarrow \mu^+\mu^-$)

- Limits @ 95% CL (first world limits on these decays)

\[
\begin{align*}
\text{BR}(B_s \rightarrow \mu^+\mu^-\mu^+\mu^-) & < 1.3 \times 10^{-8} \\
\text{BR}(B_d \rightarrow \mu^+\mu^-\mu^+\mu^-) & < 5.4 \times 10^{-9}
\end{align*}
\]

LHCb preliminary, 1 fb$^{-1}$

LHCb-CONF-2012-010
LHCb very rare decays current searches

Searches for Majorana neutrinos in B^- decays
B\(^-\) \rightarrow D^+\mu^-\mu^- and B\(^-\) \rightarrow D^{*+}\mu^-\mu^- can arise from the presence of virtual Majorana neutrinos of any mass. Other states containing π\(^+\), D\(^+_s\), or D\(^0\)π\(^+\) can be mediated by an on-shell Majorana neutrino.

No signal found in the searched channels in 0.41 fb\(^{-1}\).

B\(^-\) \rightarrow π^+\mu^-\mu^- has been used to establish neutrino mass dependent upper limits on the coupling |\(V_{\mu4}\)| of a heavy Majorana neutrino to a muon and a virtual W.
LHCb very rare decays current searches

$\tau^{\pm} \rightarrow \mu^{+}\mu^{-}\mu^{\pm}$
$\tau^\pm \to \mu^+\mu^-\mu^\pm$

Theory interest

- Decay extremely suppressed in SM $\text{BR} \sim 10^{-40}$

- But very enhanced by several NP models

<table>
<thead>
<tr>
<th>Model, processes</th>
<th>$B(\tau^- \to \mu^+\mu^-\mu^-)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unparticles</td>
<td>$10^{-3} - 10^{-11}$</td>
</tr>
<tr>
<td>Neutral SUSY Higgs</td>
<td>$< 10^{-7}$</td>
</tr>
<tr>
<td>Littlest Higgs with T-Parity</td>
<td>$< 10^{-8}$</td>
</tr>
<tr>
<td>Non universal gauge interaction</td>
<td>$< 10^{-8}$</td>
</tr>
<tr>
<td>mSUGRA + seesaw</td>
<td>$< 10^{-9}$</td>
</tr>
<tr>
<td>SUSY + seesaw (Higgs mediated)</td>
<td>$< 10^{-10}$</td>
</tr>
<tr>
<td>SUSY SO(10) + seesaw</td>
<td>$< 10^{-10}$</td>
</tr>
<tr>
<td>SM + heavy Majorana neutrino</td>
<td>$< 10^{-10}$</td>
</tr>
<tr>
<td>SM + neutrino oscillations</td>
<td>$< 10^{-40}$</td>
</tr>
</tbody>
</table>

see talk by S. Davidson
Current limits (@ 90% CL)

- BaBar \(\text{BR}(\tau^\pm \rightarrow \mu^+\mu^-\mu^\pm) < 3.3 \times 10^{-8} \)
- Belle \(\text{BR}(\tau^\pm \rightarrow \mu^+\mu^-\mu^\pm) < 2.1 \times 10^{-8} \)

* Extrapolating from these results, a future super B factory (SuperB or SuperKEKB) is expected to reach a sensitivity of

\[
\text{BR}(\tau^\pm \rightarrow \mu^+\mu^-\mu^\pm) \sim 10^{-9} - 10^{-10} \text{ with 75 ab}^{-1}
\]

B. Meadows et al., arXiv:1109.5028
Analysis strategy

- Initial loose selection
- Discriminate signal from background in bins of 3 distributions:
 - Likelihoods from geometrical variables
 - Likelihoods from muon PID variables
 - 3μ invariant mass
- Calibrate the 3 likelihoods on data
- Background estimation from mass sidebands
 - Specific backgrounds also considered
- Relative normalization with $D_s \rightarrow \phi(\mu\mu)\pi$
- Blind analysis

→ Competitive sensitivity can be reached very soon
LHCb very rare decays current searches

\[\text{K}_s \rightarrow \mu^+\mu^- \]
FCNC, with SM BR predicted,
- \(\text{BR}(K_s \rightarrow \mu^+\mu^-) \sim 5 \times 10^{-12} (\pm 30\%) \)

- Probe CP violating phase in
 \(s \rightarrow d l^+ l^- \) amplitude
- Interesting region for NP:
 \(\text{BR} \) below \(10^{-10,-11} \)

Experimental status: current limit from 1973!
- \(\text{BR}(K_s \rightarrow \mu^+\mu^-) < 3.2 \times 10^{-7} \) @ 90% CL

$K_S \to \mu^+\mu^-$ - Analysis strategy

- Use $K_S^0 \to \pi^+\pi^-$ to calibrate and normalize.
 - Use same geometrical selection for both channels
- Build geometrical BDT and classify events in 2D space.

- Assess possible backgrounds:
 - Combinatorial, extrapolate from sidebands
 - $K_S^0 \to \pi^-(\mu^-\bar{\nu})\pi^+(\mu^+\nu)$
 - Physical: $K_S \to \pi^+\mu^-\nu$, $K_L \to \mu^-\mu^+$

- Combine results using CL$_S$ method

 With 1 fb$^{-1}$, expected upper limit in the range $10^{-8} - 10^{-9}$
Prospects for other channels
Prospects for other channels

- $B_{d,s} \rightarrow \mu^+\mu^-\gamma$
 - Sensitivity to NP not clear to us, regardless of its SM BR.
 - The mode is accessible experimentally, but more challenging than $B_s \rightarrow \mu^+\mu^-$. See next talk by A. Petrov

- $B_{d,s} \rightarrow J/\psi\gamma$
 - Similar situation to $B_{d,s} \rightarrow \mu^+\mu^-\gamma$. LHCb could measure the BR, depending on its actual value

- $B_{d,s} \rightarrow e\mu$
 - Studies of this decay ongoing, world best limit should be in reach with 1 fb$^{-1}$

- $B_{d,s} \rightarrow \tau\tau$
 - Also preliminary work done. Experimentally not easy, because of difficult reconstruction of τ
Conclusions
Conclusions

- **Very rare decays** are a very relevant indirect search for NP.
 - These decays are a strong point of LHCb! Several searches performed, with the advantage of being similar from an experimental point of view.

- New results presented in $B_{d,s} \rightarrow \mu^+\mu^-$, $B_{d,s} \rightarrow \mu^+\mu^-\mu^+\mu^-$ and Majorana neutrinos search. Very important constraint to NP phase space, in particular from $B_{d,s} \rightarrow \mu^+\mu^-$, where a world best upper limit on the BR has been set!

- New results soon:
 - $\tau^\pm \rightarrow \mu^+\mu^-\mu^\pm$
 - $K_s \rightarrow \mu^+\mu^-$

And more to come...