Very rare decay searches at LHCb

Implications of LHCb measuréments and future prospects

April 16th, 2012 **Xabier Cid Vidal**

Universidade de Santiago de Compostela, on behalf of the LHCb collaboration

Outline

- Introduction
- LHCb very rare decays current searches
 - $-B_{d,s} \rightarrow \mu^+\mu^-$
 - $-B_{d,s} \rightarrow \mu^+\mu^-\mu^+\mu^-$
 - Searches for Majorana neutrinos in B⁻ decays
 - $T^{\pm} \rightarrow \mu^{+}\mu^{-}\mu^{\pm}$
 - $K_s \rightarrow \mu^+ \mu^-$
- Prospects for other channels
- Conclusions

Introduction

Introduction

- General concept of very rare decays in LHCb:
 - Access NP through new virtual particles entering in the loop: indirect search of NP, accessing higher energy scales!
 - Very relevant test of SM predictions, for extremely small BR.
- Searches are experimentally similar:
 - Control channels used to avoid dependence on simulation.
 - Geometrical properties combined in MVA to classify the events.
 - Use of normalization channels (with similar geometry/trigger) to convert observed number of events in BR, without use of absolute luminosity.
 - Blind analyses (signal region not looked at until the analyses are frozen)
 - Produce results which constraint the phase space of NP!

$$\longrightarrow$$
 $B_{d,s} \rightarrow \mu^{+}\mu^{-}$

$B_{d,s} \rightarrow \mu^{+}\mu^{-}$ - Introduction

- $B_{d,s} \rightarrow \mu^+ \mu^-$ decays are very supressed in the SM:
 - BR(B_s $\rightarrow \mu\mu$) = (3.2 ± 0.2) x 10⁻⁹
 - BR ($B_d \rightarrow \mu\mu$) = (0.10 ± 0.01) x 10⁻⁹

A. J. Buras, M. V. Carlucci, S. Gori, and G. Isidori, JHEP 1010, 2010 A. J. Buras, Phys. Polon. B41, 2010

■ They turn out to be, however, very sensitive to scalar and pseudo-scalar operators, so sensitive to NP.

SM, NP

SM, NP

$B_{d,s} \rightarrow \mu^{+}\mu^{-}$ - Analysis overview

Selection: apply some cuts on all µµ candidates to remove most of the background.

- Classify each event using two variables (bins in a 2D parameter space):
 - Geometrical properties

 (combined in Boosted
 Decision Tree)
 - Invariant Mass

- Treat each bin as an independent experiment. Results combined using CL_s method (Modified Frequentist Approach)
 See T. Junk NIM A434, 435,1999
- Use of control channels to calibrate and normalize (normalization to $B^+ \rightarrow J/\psi K^+$, $B_d \rightarrow K\pi$ and $B_s \rightarrow J/\psi \Phi$, give compatible results)

$B_{d,s} \rightarrow \mu^{+}\mu^{-}$ - Mass projections

Results in 1 fb⁻¹ consistent with SM

Data
Error in sum of all expected
background contributions
(hatched area)

Results in most sensitive region of BDT

SM signal

$B_{d,s} \rightarrow \mu^{+}\mu^{-}$ - Results

Expected limit for background +SM hypothesis Observed limit

■ Limits **1 fb**⁻¹ @ 95% CL (WB)

- BR(B_s→
$$\mu^{+}\mu^{-}$$
) < 4.5 x 10⁻⁹
- BR(B_d→ $\mu^{+}\mu^{-}$) < 8.1 x 10⁻¹⁰

■ BR($B_s \rightarrow \mu^+ \mu^-$) estimate:

- BR(B_s
$$\rightarrow \mu^{+}\mu^{-}$$
)=(0.8^{+1.8}_{-1.3}) x 10⁻⁹

→ NP could still be there, supressing $B_s \rightarrow \mu^+ \mu^-$ With the 2012 data we

With the 2012 data, we could be able to find a 3σ evidence if BR(B_s→ μ⁺μ⁻) is SM

For the theory implications of the result, see talks by G. Isidori and N. Mahmoudi

$$\longrightarrow$$
 $B_{d,s} \rightarrow \mu^+\mu^-\mu^+\mu^-$

$B_{d,s} \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$ - Overview

- SM process: $B_{d,s} \rightarrow \mu^+ \mu^- \gamma^*$ with $\gamma^* \rightarrow \mu^+ \mu^-$
 - Non-resonant BR predicted to be 10⁻¹⁰ 10⁻¹¹
 D. Melikhov and N. Nikitin, Phys. Rev. D 70, 114028, (2004)
 D. Melikhov, N. Nikitin, and K. Toms, Phys. At. Nucl. 68, 1842 (2005)
- Decay sensitive to NP:
 - eg sGoldstinos ($B_s \rightarrow S(\mu^+\mu^-)P(\mu^+\mu^-)$)
- Resonant decay mode $B_s \rightarrow J/\psi(\mu^+\mu^-)\Phi(\mu^+\mu^-)$ with expected BR at the level of (2.3±0.9) x 10⁻⁸. Observed yield consistent with expectation.

■ Cut based analysis, normalization to $B_d \rightarrow J/\psi K^*$. Non-resonant peaking backgrounds kept under control

$B_{d,s} \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$ - Results

- Number of observed events in 1 fb⁻¹ consistent with background expectation
- Set a limit on signal events using the CL_s method (as in $B_s \rightarrow \mu^+\mu^-$)

■ Limits @ 95% CL (first world limits on these decays)

$$_{-}$$
 - - - - LHCb preliminary, 1 fb⁻¹
 $_{-}$ BR(B_s→ μ⁺μ⁻μ⁺μ⁻) < 1.3 x 10⁻⁸
 $_{-}$ BR(B_d→ μ⁺μ⁻μ⁺μ⁻) < 5.4 x 10⁻⁹

LHCb-CONF-2012-010

→ Searches for Majorana neutrinos in Bdecays

Searches for Majorana neutrinos in B- decays

■ $B^- \to D^+ \mu^- \mu^-$ and $B^- \to D^{*+} \mu^- \mu^-$ can arise from the presence of virtual Majorana neutrinos of any mass. Other states containing π^+ , D^+_s , or $D^0\pi^+$ can be mediated by an onshell Majorana neutrino

e.g. Majorana neutrino mediated $B^- \rightarrow \pi^+(D_s^+)\mu^-\mu^-$

■ No signal found in the searched channels in 0.41 fb⁻¹

LHCb-PAPER-2011-038

■ B⁻ \rightarrow $\Pi^+\mu^-\mu^-$ has been used to establish neutrino mass dependent upper limits on the coupling $|V_{\mu 4}|$ of a heavy Majorana neutrino to a muon and a virtual W.

$$\longrightarrow \mathsf{T}^{\pm} \to \mu^+ \mu^- \mu^{\pm}$$

T[±] → μ⁺μ⁻μ[±] Theory interest

■ Decay extremely supressed in SM BR ~ 10⁻⁴⁰

But very enhanced by several NP models

Model, processes	$\mathcal{B}(\tau^- \to \mu^+ \mu^- \mu^-)$
Unparticles	$10^{-3} - 10^{-11}$
Neutral SUSY Higgs	$< 10^{-7}$
Littlest Higgs with T-Parity	$< 10^{-8}$
Non universal gauge interaction	$< 10^{-8}$
mSUGRA + seesaw	$< 10^{-9}$
SUSY + seesaw (Higgs mediated)	$< 10^{-10}$
SUSY SO(10) + seesaw	$< 10^{-10}$
$\mathrm{SM} + \mathrm{heavy} \; \mathrm{Majorana} \; \mathrm{neutrino}$	$< 10^{-10}$
SM + neutrino oscillations	$< 10^{-40}$

see talk by S. Davidson

T[±] → μ⁺μ⁻μ[±] Experimental status

Current limits (@ 90% CL)

```
– BaBar BR(\tau^\pm \to \mu^+ \mu^- \mu^\pm)<3.3 x 10<sup>-8</sup>
– Belle BR(\tau^\pm \to \mu^+ \mu^- \mu^\pm)<2.1 x 10<sup>-8</sup>
```

* Extrapolating from these results, a future super B factory (SuperB or SuperKEKB) is expected to reach a sensitivity of

BR(
$$T^{\pm} \rightarrow \mu^{+}\mu^{-}\mu^{\pm}$$
) ~ 10⁻⁹- 10⁻¹⁰ with 75 ab⁻¹

B. Meadows et al., arXiv:1109.5028

T[±] → μ⁺μ⁻μ[±] Analysis strategy

- Initial loose selection
- Discriminate signal from background in bins of 3 distributions:
 - Likelihoods from geometrical variables
 - Likelihoods from muon PID variables
 - 3µ invariant mass
- Calibrate the 3 likelihoods on data
- Background estimation from mass sidebands
 - Specific backgrounds also considered
- Relative normalization with $D_s \rightarrow φ(μμ)π$
- Blind analysis
 - Competitive sensitivity can be reached very soon

$$\longrightarrow \ K_s \to \mu^+ \mu^-$$

$K_s \rightarrow \mu^+\mu^-$ - Introduction

- FCNC, with SM BR predicted,
 - BR($K_s \rightarrow \mu^+ \mu^-$) ~ 5 × 10⁻¹² (±30%)
 - G. Ecker, A. Pich, Nuclear Physics B 366 (1991)
 - G. Isidori, R. Unterdorfer, JHEP 0401 (2004)
 - Probe CP violating phase in $s \rightarrow dl^+l^-$ amplitude
 - Interesting region for NP:
 BR below 10^{-10,-11}

- Experimental status: current limit from 1973!
 - BR($K_s \rightarrow \mu^+\mu^-$) < 3.2 × 10⁻⁷ @ 90% CL S. Gjesdal, J. Steinberger et al, Physics Letters B, 44 (1973)

$K_s \rightarrow \mu^+\mu^-$ - Analysis strategy

- Use $K_s^0 \to \Pi^+\Pi^-$ to calibrate and normalize.
 - Use same geometrical selection for both channels
- Build geometrical BDT and classify events in 2D space.
- Assess possible backgrounds:
 - Combinatorial, extrapolate from sidebands
 - $K_s^0 \to \Pi^-(\mu^- \bar{\nu}) \Pi^+(\mu^+ \nu)$
 - Physical: $K_s \rightarrow \Pi^+ \mu^- v$, $K_L \rightarrow \mu^- \mu^+$

- Combine results using CL_s method
 - With 1 fb⁻¹, expected upper limit in the range 10^{-8} 10^{-9}

Prospects for other channels

Prospects for other channels

- $B_{d,s} \rightarrow \mu^+ \mu^- \gamma$
 - Sensitivity to NP not clear to us, regardless of its SM BR.
 - The mode is accesible experimentally, but more challenging than $B_s \to \mu^+ \mu^-$ See next talk by A. Petrov
- $B_{d,s} \rightarrow J/\psi \gamma$
 - Similar situation to $B_{d,s} \to \mu^+ \mu^- \gamma$. LHCb could measure the BR, depending on its actual value
- $B_{d,s} \rightarrow e\mu$
 - Studies of this decay ongoing, world best limit should be in reach with 1 fb⁻¹
- lacksquare $B_{d,s} o TT$
 - Also preliminary work done. Experimentally not easy, because of difficult reconstruction of τ

Conclusions

Conclusions

- Very rare decays are a very relevant indirect search for NP.
 - These decays are a strong point of LHCb! Several searches performed, with the advantage of being similar from an experimental point of view.
- New results presented in $B_{d,s} \to \mu^+\mu^-$, $B_{d,s} \to \mu^+\mu^-\mu^+\mu^-$ and Majorana neutrinos search. Very important constraint to NP phase space, in particular from $B_{d,s} \to \mu^+\mu^-$, where a world best upper limit on the BR has been set!
- New results soon:
 - $\ T^\pm \to \mu^+ \mu^- \mu^\pm$
 - $-~K_s \rightarrow \mu^+ \mu^-$

And more to come...