Implications of $B_s \rightarrow \mu^+ \mu^-$ and $B \rightarrow K^* \mu^+ \mu^$ results for supersymmetry

Nazila Mahmoudi

CERN TH & LPC Clermont-Ferrand

Thanks to: T. Hurth, S. Neshatpour, J. Orloff, A. Arbey, M. Battaglia and A. Djouadi

Implications of LHCb measurements and future prospects CERN, April 16-18, 2012

Introduction ●	$B_{s,d} \rightarrow \mu^+ \mu^-$	Implications	Superlso 00	Conclusion O
Search for S	upersymmetry			

- Direct searches

- Search for SUSY is the main focus of BSM searches in both ATLAS and CMS
- Strong limits in the constrained SUSY scenarios
- No signal so far...

Introduction ●	$\overset{\boldsymbol{B_{\boldsymbol{s},\boldsymbol{d}}}}{\circ\circ\circ} \to \mu^+\mu^-$	$B \to K^* \mu^+ \mu^-$	Implications	Superlso 00	Conclusion O
Search for S	upersymmetry				

- Direct searches

- Search for SUSY is the main focus of BSM searches in both ATLAS and CMS
- Strong limits in the constrained SUSY scenarios
- No signal so far...
- Indirect searches (flavour)
 - LHCb has also a rich BSM program through indirect searches!
 - key processes: $B_s o \mu^+ \mu^-$, $B o K^* \mu^+ \mu^-$ and CP violation

While direct searches are only pushing the limits higher, flavour physics can add to the picture substantially!

- Indirect searches (Dark matter, precision tests,...)

Not subject of this talk

Introduction	$B_{ed} \rightarrow \mu^+ \mu^-$	$B ightarrow K^* \mu^+ \mu^-$	Implications	Superlso	Conclusion
		000000	0000000000	00	
BR($B_s \rightarrow \mu$					

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1\cdots 10, 5, P} (C_i(\mu)\mathcal{O}_i(\mu) + C_i'(\mu)\mathcal{O}_i'(\mu)) \right]$$

Relevant operators:
$$\mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\gamma_5 \ell)$$

$$\begin{split} \mathcal{O}_{S} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) (\bar{\ell} \ell) \\ \mathcal{O}_{P} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) (\bar{\ell} \gamma_{5} \ell) \\ \mathrm{BR}(B_{s} \to \mu^{+} \mu^{-}) &= \frac{G_{F}^{2} \alpha^{2}}{64\pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}} m_{B_{s}}^{3} |V_{tb} V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}} \xrightarrow{\ell} \ell \xrightarrow{\ell}$$

Very sensitive to new physics, especially for large tan β : SUSY contributions can lead to an O(100) enhancement over the SM!

Introduction O	$ \overset{\boldsymbol{B}_{\boldsymbol{s},\boldsymbol{d}}}{\circ \bullet \circ} \to \mu^+ \mu^- $	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Implications	Superlso 00	Conclusion O
$BR(B_s o \mu$					

Experimental results:

LHCb: BR $(B_s \to \mu^+\mu^-) < 4.5 \times 10^{-9}$ at 95% C.L. LHCb-TALK-2012-028 CMS: BR $(B_s \to \mu^+\mu^-) < 7.7 \times 10^{-9}$ at 95% C.L. CMS BPH11020

ightarrow Approaching dangerously the SM value!

ightarrow Crucial to have a clear estimation of the SM prediction!

Main source of uncertainty: f_{B_s}

- ETMC-11: 232 ± 10 MeV
- Fermilab-MILC-11: 242 ± 9.5 MeV

Our choice: $234\pm10~\text{MeV}$

Most up-to-date input parameters (PDG 2011):

V _{ts}	V _{tb}	m _{Bs}	τ_{B_s}
-0.0403	0.999152	5.3663 GeV	1.472 ps

SM prediction: BR
$$(B_s \rightarrow \mu^+ \mu^-) = (3.58 \pm 0.36) \times 10^{-9}$$

Most important sources of uncertainties:

8% from f_{B_s} 2% from EW corrections 1% from matching scale 2% from μ_b scale 2% from B_s lifetime 5% from V_{ts} 1.3% from top mass Overall TH uncertainty: 10%.

Using $f_{B_e} = 225$ MeV and $\tau_{B_e} = 1.425$ ps, one gets: BR $(B_s \to \mu^+ \mu^-) = 3.20 \times 10^{-9}$

Intro du ction	$B_{ed} \rightarrow \mu^+ \mu^-$	${m B} o {m K}^* \mu^+ \mu^-$	Implications	Superlso	Conclusion
	ಂಂಂ	000000	0000000000	00	
$B ightarrow K^* \mu^+ \mu$	[–] – Angular distri	butions			

Angular distributions

The full angular distribution of the decay $\overline{B}^0 \to \overline{K}^{*0} \ell^+ \ell^-$ with $\overline{K}^{*0} \to K^- \pi^+$ on the mass shell is completely described by four independent kinematic variables:

- q²: dilepton invariant mass squared
- $heta_\ell$: angle between ℓ^- and the $ar{B}$ in the dilepton frame
- $heta_{K^*}$: angle between K^- and $ar{B}$ in the $K^-\pi^+$ frame
- ϕ : angle between the normals of the $K^-\pi^+$ and the dilepton planes

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi}=\frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

Kinematics: $4m_{\ell}^2 \leq q^2 \leq (M_B - m_{K^*})^2$, $-1 \leq \cos\theta_{\ell} \leq 1$, $-1 \leq \cos\theta_{K^*} \leq 1$, $0 \leq \phi \leq 2\pi$ $J(q^2, \theta_{\ell}, \theta_{K^*}, \phi)$ are written in function of the angular coefficients $J_{1-9}^{s,c}$ J_{1-9} : functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\mathcal{O}_{9} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}\gamma^{\mu} b_{L}) (\bar{\ell}\gamma_{\mu}\ell)$$

$$\mathcal{O}_{10} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}\gamma^{\mu} b_{L}) (\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$$

$$\mathcal{O}_{5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) (\bar{\ell}\ell)$$

$$\mathcal{O}_{P} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) (\bar{\ell}\gamma_{5}\ell)$$

μ

Introduction O	$B_{\boldsymbol{s},\boldsymbol{d}} \rightarrow \mu^+ \mu^-$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ \text{oo} \bullet \circ \circ \circ \circ \circ \end{array}$	Implications	Superlso 00	Conclusion O
$B ightarrow K^* \mu^+ \mu^-$	– Observables				

Dilepton invariant mass spectrum

$$\frac{d\Gamma}{dq^2} = \frac{3}{4} \left(J_1 - \frac{J_2}{3} \right)$$

Forward backward asymmetry

Difference between the differential branching fractions in the forward and backward directions:

$$A_{\rm FB}(q^2) \equiv \left[\int_0^1 - \int_{-1}^0\right] d\cos\theta_l \frac{d^2\Gamma}{dq^2 d\cos\theta_l} \left/ \frac{d\Gamma}{dq^2} = \frac{3}{8}J_6 \right/ \frac{d\Gamma}{dq^2}$$

 \rightarrow Reduced theoretical uncertainty

Forward backward asymmetry zero-crossing

 \rightarrow Reduced form factor uncertainties

$$q_0^2 \simeq -2m_b m_B \frac{C_9^{\text{eff}}(q_0^2)}{C_7} + O(\alpha_s, \Lambda/m_b)$$

 \rightarrow fix the sign of $\mathit{C_9}/\mathit{C_7}$

Polarization fractions:

$$F_L(q^2) = \frac{|A_0|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$
$$F_T(q^2) = 1 - F_L(q^2) = \frac{|A_{\perp}|^2 + |A_{\parallel}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

 K^* polarization parameter:

$$\alpha_{K^*}(q^2) = \frac{2F_L}{F_T} - 1 = \frac{2|A_0|^2}{|A_{\parallel}|^2 + |A_{\perp}|^2} - 1$$

Transverse asymmetries:

$$A_{T}^{(1)}(q^{2}) = \frac{-2\Re(A_{\parallel}A_{\perp}^{*})}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}} \qquad A_{T}^{(2)}(q^{2}) = \frac{|A_{\perp}|^{2} - |A_{\parallel}|^{2}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}}$$
$$A_{T}^{(3)}(q^{2}) = \frac{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \qquad A_{T}^{(4)}(q^{2}) = \frac{|A_{0L}A_{\perp L}^{*} - A_{0R}^{*}A_{\perp R}|}{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}$$
$$A_{Im}^{(q^{2})} = -2\operatorname{Im}\left(\frac{A_{\parallel}A_{\perp}^{*}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}}\right) \qquad S_{3}(q^{2}) = \frac{1}{2}(1 - F_{L}(q^{2}))A_{T}^{(2)}(q^{2})$$

Introduction O	$\begin{array}{c} \mathbf{B}_{\boldsymbol{s},\boldsymbol{d}} \to \mu^+ \mu^- \\ \circ \circ \circ \end{array}$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ 0 0 0 0 0 0 \end{array}$	Implications	Superlso 00	Conclusion O
$B o K^* \mu^+ \mu^-$	– Isospin asymn	netry			

Isospin asymmetry:

Non-factorizable graphs: annihilation or spectator-scattering diagrams Isospin asymmetry arises when a photon is radiated from the spectator quark

ightarrow depends on the charge of the spectator quark

ightarrow different for charged and neutral B meson decays

$$\frac{dA_{I}}{dq^{2}} \equiv \frac{\frac{d\Gamma}{dq^{2}}(B^{0} \to K^{*0}\ell^{+}\ell^{-}) - \frac{d\Gamma}{dq^{2}}(B^{-} \to K^{*-}\ell^{+}\ell^{-})}{\frac{d\Gamma}{dq^{2}}(B^{0} \to K^{*0}\ell^{+}\ell^{-}) + \frac{d\Gamma}{dq^{2}}(B^{-} \to K^{*-}\ell^{+}\ell^{-})}$$

The SM is sensitive to C_5 and C_6 at small q^2 , but to C_3 and C_4 at larger q^2

Introduction	$B_{s,d} \rightarrow \mu^+ \mu^-$	$B \rightarrow K^* \mu^+ \mu^-$	Implications	Superlso	Conclusion
0	000	0000000	00000000000	00	0

$B \to K^* \mu^+ \mu^-$ – Experimental results from LHCb

LH Cb-CONF-2012-008

Most important sources of uncertainty:

For the branching ratio (1 GeV $< q^2 < 6$ GeV):

57% from form factors

7% from $1/m_b$ sub-leading corrections

2% from parametric uncertainties (m_b, m_c, m_t)

2.5% from scale variations

2.5% from CKM inputs

Observable	SM prediction	Experiment
$10^7 imes \langle BR(B ightarrow K^* \mu^+ \mu^-) angle_{[1,6]}$	0.47 ± 0.27	$0.42 \pm 0.04 \pm 0.04$
$\langle {\cal A}_{FB}(B ightarrow {\cal K}^* \mu^+ \mu^-) angle_{[1,6]}$	-0.06 ± 0.08	$-0.18\substack{+0.06+0.01\\-0.06-0.02}$
$\langle F_L(B ightarrow K^* \mu^+ \mu^-) angle_{[1,6]}$	0.71 ± 0.12	$0.66^{+0.06+0.04}_{-0.06-0.03}$
$q_0^2(B ightarrow K^* \mu^+ \mu^-) \; ({ m GeV}^2)$	4.26 ± 0.33	$4.9^{+1.1}_{-1.3}$

Implications for Supersymmetry:

- Constrained SUSY
- General SUSY

Constraints in CMSSM (all parameters varied)

At 95% C.L., including th uncertainty: ${
m BR}(B_s o \mu^+ \mu^-) < 5.0 imes 10^{-9}$

A.G. Akeroyd, F.M., D. Martinez Santos, JHEP 1112 (2011) 088 Superiso v3.3

Constraints in CNMSSM (all parameters varied)

A.G. Akeroyd, F.M., D. Martinez Santos, JHEP 1112 (2011) 088 Superiso v3.3 $\,$

Introduction O	$B_{\boldsymbol{s},\boldsymbol{d}} \rightarrow \mu^+ \mu^-$	Implications 0000000000	Superlso 00	Conclusion O
Implications -	$- B \rightarrow K^* u^+ u^-$			

Constraints in CMSSM (fixed tan β and A_0)

Introduction O	$B_{s,d} \rightarrow \mu^+ \mu^-$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ 0000000 \end{array}$	Implications 0000000000	Superlso 00	Conclusion O
Implications	$-B ightarrow K^* \mu^+ \mu^-$				

 ${\sf BR}(B o K^*\mu^+\mu^-)$ in the low and high q^2 regions:

 CMSSM - tan eta= 50

Superlso v3.3

For $m_{\tilde{t}_1} > \sim 400$ GeV, SUSY spread is within the th+exp error

- \rightarrow Look at other observables ($A_{FB}, F_{L},...$)
- \rightarrow Reduce both theory and experimental errors.

Introduction O	$B_{s,d} \rightarrow \mu^+ \mu^-$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ 0 0 0 0 0 0 0 \end{array}$	Implications 0000●000000	Superlso 00	Conclusion O
Implications	$-B ightarrow K^* \mu^+ \mu^-$				

Other observables of interest:

Superiso v3.3

 A_{FB} in the low q^2 region is especially interesting!

Introduction O	$B_{s,d} \rightarrow \mu^+ \mu^-$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Implications 00000000000	Superlso 00	Conclusion O
Implications	$-B \rightarrow K^* \mu^+ \mu^-$				

Other observables (not yet measured):

 $CMSSM - \tan \beta = 50$

Introduction O	$\begin{array}{c} \mathbf{B}_{\boldsymbol{s},\boldsymbol{d}} \to \mu^+ \mu^- \\ \circ \circ \circ \end{array}$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ 0 0 0 0 0 0 0 \end{array}$	Implications 000000●0000	Superlso 00	Conclusion O
Implications	$-B ightarrow K^* \mu^+ \mu^-$				

A_{FB} zero-crossing in CMSSM (with all parameters varied):

Superiso v3.3

Sign of C_7 in SUSY is fixed!

Introduction O	$B_{\boldsymbol{s},\boldsymbol{d}} \rightarrow \mu^+ \mu^-$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Implications 0000000000000	Superlso 00	Conclusion O
Implications					

Introduction O	$\begin{array}{c} \mathbf{B}_{\boldsymbol{s},\boldsymbol{d}} \to \mu^+ \mu^- \\ \circ \circ \circ \end{array}$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ 0 0 0 0 0 0 0 0 \end{array}$	Implications 0000000000000	Superlso 00	Conclusion O
Implications					

Black line: CMS exclusion limit with 1.1 fb^{-1} data

Superlso v 3.3

Introduction O	$B_{\boldsymbol{s},\boldsymbol{d}} \rightarrow \mu^+ \mu^-$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Implications 0000000000000	Superlso 00	Conclusion O
Implications					

Black line: CMS exclusion limit with 1.1 fb^{-1} data Red line: CMS exclusion limit with 4.4 fb⁻¹ data

Introduction O	$B_{s,d} \rightarrow \mu^+ \mu^-$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Implications 0000000000000	Superlso 00	Conclusion O
Implications					

Black line: CMS exclusion limit with 1.1 fb⁻¹ data Red line: CMS exclusion limit with 4.4 fb⁻¹ data New LHCb limits for BR($B_s \rightarrow \mu^+\mu^-$) and BR($B_d \rightarrow \mu^+\mu^-$)

Superlso v 3.3

Introduction O	$B_{s,d} \rightarrow \mu^+ \mu^-$	Implications 0000000000000	Superlso 00	Conclusion O
Implications				

Black line: CMS exclusion limit with 1.1 fb⁻¹ data Red line: CMS exclusion limit with 4.4 fb⁻¹ data New LHCb limits for BR($B_s \rightarrow \mu^+\mu^-$) and BR($B_d \rightarrow \mu^+\mu^-$)

Superlso v 3.3

Going beyond constrained scenarios

- CMSSM useful for benchmarking, model discrimination,...
- However the mass patterns could be more complicated

Phenomenological MSSM (pMSSM)

- The most general CP/R parity-conserving MSSM
- Minimal Flavour Violation at the TeV scale
- The first two sfermion generations are degenerate
- The three trilinear couplings are general for the 3 generations

ightarrow 19 free parameters

10 sfermion masses, 3 gaugino masses, 3 trilinear couplings, 3 Higgs/Higgsino

A. Djouadi, J.-L. Kneur, G. Moultaka, hep-ph/0211331

 \rightarrow Interplay between low energy observables and high p_t results

Constraints from $\mathsf{BR}(B_s o \mu^+ \mu^-)$:

• 2011 bound from LHCb+CMS + estimated th syst:

 ${
m BR}(B_s o \mu^+ \mu^-) < 1.26 imes 10^{-8}$

• SM like branching ratio with estimated 20% total uncertainty

Light M_A strongly constrained!

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847 A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1906

CERN, April 16, 2012

A closer look in the maximal mixing scenario:

Flavour constraints: $b \to s\gamma$, $B \to \tau\nu$ and the new LHCb limit on $B_s \to \mu\mu$ Heavy CP-even SM-like Higgs with $m_H \sim 125$ GeV: excluded by flavour constraints! $B_s \to \mu\mu$ excludes zones not yet accessible by direct searches!

- Public C program
- dedicated to the flavour physics observable calculations
- Several models implemented: General 2HDM, MSSM, NMSSM, BMSSM
- Many flavour observables: $B \to X_s \gamma$, $B_{s,d} \to \mu^+ \mu^-$, $B \to \tau \nu$, $B \to D \tau \nu$, $B \to D e \nu$, $D_s \to \tau \nu$, $D_s \to \mu \nu$, $K \to \mu \nu$
- Other observables: $(g-2)_{\mu}$, relic density, ...

http://superiso.in2p3.fr

FM, Comput. Phys. Commun. 178 (2008) 745
 FM, Comput. Phys. Commun. 180 (2009) 1579
 FM, Comput. Phys. Commun. 180 (2009) 1718

Imminent release of version 3.3!

Includes $B \to K^* \ell^+ \ell^-$ and $B \to X_s \ell^+ \ell^-$ observables:

- $B o X_s \mu^+ \mu^-$ (for both high and low q^2):
 - Branching ratio
 - Forward-backward asymmetry (AFB)
 - AFB zero-crossing
- $B o K^* \mu^+ \mu^-$ (for both high and low q^2):
 - Branching ratio
 - Forward-backward asymmetry (AFB)
 - AFB zero-crossing
 - *F_L*, *F_T*, α_{K*}
 - $A_T^{(1)}$, $A_T^{(2)}$, $A_T^{(3)}$, $A_T^{(4)}$, $A_T^{(5)}$
 - A_{Im}
 - $H_T^{(1)}, H_T^{(2)}, H_T^{(3)}$
 - Isospin asymmetry and zero-crossing

- Interplay between direct and indirect searches is very important and will play a crucial role in the near future
- Many interesting flavour observables available
- The constrained SUSY scenarios are highly constrained
- General MSSM: A lot of viable model points survive, but flavour data can help squeezing the parameter space

Introduction O	$B_{s,d} \rightarrow \mu^+ \mu^-$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Implications	Superlso 00	Conclusion O
Backup					

Backup

Introduction	$B_{sd} \rightarrow \mu^+ \mu^-$	${m B} o {m \kappa}^* \mu^+ \mu^-$	Implications	Superlso	Conclusion
	000	000000	0000000000	00	
Muon anon	nalous magnetic mo	oment			

Introduction O	$B_{\boldsymbol{s},\boldsymbol{d}} \rightarrow \mu^+ \mu^-$	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^* \mu^+ \mu^- \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Implications	Superlso 00	Conclusion O
General MSS	M – Combined wi	ith the Higgs sear	ches		

Squeeze even more the parameter space by combining with:

- Direct SM-like Higgs searches
- Limit from $A \rightarrow \tau^+ \tau^-$
- Constraints from ${\sf BR}(B_s o\mu^+\mu^-)$
- Dark matter direct detection constraints (XENON)

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1906

Squeeze even more the parameter space by combining with:

- Direct SM-like Higgs searches
- Limit from $A \rightarrow \tau^+ \tau^-$
- Constraints from ${\sf BR}(B_s o\mu^+\mu^-)$
- Dark matter direct detection constraints (XENON)

imposing in addition the *h* rates

A. Arbey, M. Battaglia, F.M., Eur. Phys. J. C72 (2012) 1906

Introduction	$B_{ed} \rightarrow \mu^+ \mu^-$	${m B} o {m K}^* \mu^+ \mu^-$	Implications	Superlso	Conclusion
	000	000000	0000000000	00	

SuperIso

