TAKE HOME MESSAGE

• γ from $B \rightarrow DK$ is theoretically extremely clean
• it is an interesting observable to measure precisely
OUTLINE

• brief outline of the $B \to DK$ methods
• what is the ultimate theory error?
 • electroweak corrections
• “the ultimate test of (MFV) NP”

Pirjol, JZ, to appear
OBTAINING GAMMA

• use interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$

MANY FINAL STATE CHOICES

- possible choices for final state f in D decay
 - CP- eigenstate (e.g. $K_S \pi^0$)
 - flavor state (e.g. $K^+\pi^-$)
 Atwood, Dunietz, Soni (1997)
 - singly Cabibbo suppressed (e.g. K^*+K^-)
 - many-body final state (e.g. $K_S \pi^+\pi^-$)
 Poluektov et al. [Belle] (2004)
- other extensions:
 - many body B final states: $B^+ \rightarrow DK^+\pi^0$, $B^0 \rightarrow D\pi^-K^+$
 - use D^{0*} in addition to D^0
 Bondar, Gershon (2004)
 - use self tagging D^{0**}, D^2
 - neutral B_d, B_s decays (time dep., time-integr., self-tag)

see also talk by Stefania Ricciardi
WHY THE METHODS WORK

• many methods: GLW, ADS, Dalitz,…

• one has \(\sim N_D N_B \) measurements, but \(\sim N_D + N_B \) unknowns

 - \(\Rightarrow \) can determine \(\gamma \)

• does it make sense to split into “methods”?

 - we are really interested in \(\gamma \)

 - combined analysis wins

• “only” benefit of splitting: compare diff. \(\gamma \)

 - check for NP or systematics
WHY MEASURE GAMMA?
WHY MEASURE GAMMA?

- now (= in the age of LHCb and upcoming SFF)
 - theoretically clean extraction of the CKM weak phase
 - standard candle of the CKM
- unlikely there is NP in γ (at present precision)
 - search for NP by comparing to other observables
 - can test for consistency in γ extraction in $B \rightarrow D K$ itself
TEST FOR NP IN DECAY AMPLITUDES

• extraction of γ has a built in test for presence of extra NP in decay ampl.

$$A(B^- \to f_D K^-) \propto r_D e^{i\delta_D} + r_B e^{i\delta_B - \gamma} + r'_B e^{i\delta_B' - \gamma'}$$

$$A(B^+ \to f_D K^+) \propto r_D e^{i\delta_D} + r_B e^{i\delta_B + \gamma} + r'_B e^{i\delta_B' + \gamma'}$$

• thus for B^+ and B^- different r_B

$$r_{B^+} \to |r_B e^{i\delta_B + \gamma} + r'_B e^{i\delta_B' + \gamma'}|; \quad r_{B^-} \to |r_B e^{i\delta_B - \gamma} + r'_B e^{i\delta_B' - \gamma'}|$$
TEST OF DIRECT CPV NP IN B→DK

• there is NP in B→DK amplitude if

\[r_{B^-} \neq r_{B^+} \]

• Belle and Babar already measure this

\[x_\pm = r_B \cos(\gamma \pm \delta_B) \]
\[y_\pm = \pm r_B \sin(\gamma \pm \delta_B) \]

• even, if \(x_+^2 + y_+^2 = x_-^2 + y_-^2 \) still possible that \(\gamma \) is shifted
IN THE (FAR) FUTURE

• another test: γ from $B^\pm \rightarrow DK^\pm$, $B^\pm \rightarrow DK^{*\pm}$, $B^\pm \rightarrow D^*K^\pm$, $B^0 \rightarrow DK^0$, ... all need to coincide!

• NP with contributions of different chirality could for instance give different shifts in γ

• since the extraction of gamma theoretically clean

• can be used to search for high scale NP when a lot of statistics

• next: what is the scale we could in principle probe?

• how clean? what is the theory error?
THEORY ERRORS ON EXTRACTING GAMMA
THEORY ERRORS

• assume SM
• several sources that can induce a shift in γ
• most can be avoided
 • with more statistics
 • example: Dalitz plot theory error
 • by modifying equations
 • example: errors from $D - \bar{D}$ mixing
• remain: errors from electroweak corrections
$D - \bar{D}$ MIXING

• in SM $D - \bar{D}$ mixing is CP conserving \Rightarrow the effect is small
• if D decay info. is from flavor tagged D (i.e. from $D^* \rightarrow D \pi$)
 • then only important changes are in the interf. term
 • change in relative phase: $\delta_f \rightarrow \langle \delta_f \rangle$
 • dilutes the interference: $\ldots \rightarrow \ldots \times e^{-\varepsilon}$
• the effect on γ is $\varepsilon \sim O(x_D^2/r_f^2, y_D^2/r_f^2)$
 • applies e.g. to GLW, ADS
 • even for doubly Cabibbo supp. D decays the shift $\Delta \gamma < 1^\circ$
• in model indep. Dalitz analysis no changes needed, if everything from $B \rightarrow DK$
 • one already fits for both $\langle \delta_f \rangle$ and ε by fitting for c_i, s_i

Grossman, Soffer, JZ, 2005
$D - \bar{D}$ **MIXING**

- the effect potentially larger, if D decay info from CLEO ($\psi(3770) \rightarrow D\bar{D}$)
- the change since time integr. interv.: $t \in (-\infty, \infty)$
 - the shift in γ is now linear in x_D, y_D
 - but still small: $\Delta \gamma \leq 2.9^\circ$ ($\leq 0.2^\circ$, if $|A_D|^2$ info. comes from $D^* \rightarrow D \pi$)
- most importantly: $D - \bar{D}$ mixing effects can be incl. exactly if x_D, y_D precisely measured
OTHER ERRORS

• for γ from (untagged) $B_s \rightarrow D\phi$ the inclusion of $\Delta \Gamma_s$ depen. important
 • $\Delta \Gamma_s$ needs to be well measured

• QED radiative corrections
 • CP conserv., in principle no effect on γ

• the remaining (SM) theory error from
 • higher electroweak corrections

Gronau, Grossman, Soffer, Surujon, JZ, 2007
IRREDUCIBLE THEORY
ERROR ON GAMMA

• irreduc. theory error in SM introduced by ew. corrections that change CKM structure
 • if only vertex corrections no effect on γ extr.
 • no effect from Z exchange
 • there is effect from box diagrams

\[\bar{u} \rightarrow \bar{u} b c W \quad \leftrightarrow \quad \bar{u} \rightarrow \bar{u} b s W \]

Pirjol, JZ, to appear
IRREDUCIBLE THEORY
ERROR ON GAMMA

- the shift on γ due to the box diagram
- dominant contrib. effectively due to t and b in the loop
- $b \rightarrow us\bar{c}$:
 - tree level $\sim V_{ub}V_{cs}^*$
 - box diagram $\sim (V_{tb}V_{ts}^*)(V_{ub}V_{cb}^*)$
 - same week phase, does not induce $\delta\gamma$
- $b \rightarrow cs\bar{u}$:
 - tree level $\sim V_{cb}V_{us}^*$
 - box diagram $\sim (V_{tb}V_{ts}^*)(V_{cb}V_{ub}^*)$
 - different week phase $\Rightarrow \delta\gamma \neq 0$
IRREDUCEIBLE THEORY ERROR ON GAMMA

• we estimate it in two ways
• integrate both t and b at the same time
 • local operator, but large logs
• resum $\log(m_b/m_W)$ but also nonlocal contribs
 • keep only local ones
• the precision suffices for our purposes

• irreducible theory error on γ is
 $\delta\gamma/\gamma < O(10^{-6})$
 • most likely even $\delta\gamma/\gamma \lesssim O(10^{-7})$
ULTIMATE TEST OF MFV

• how high NP scales can we probe using γ from $B \rightarrow DK$?
• assuming MFV: can probe $\Lambda \sim 10^2 \text{TeV}$
• assume gen. FV: can probe $\Lambda \sim 10^3 \text{TeV}$
• this is far future of course
 • $O(10^{18})$ $B\bar{B}$ pairs needed
SOME NUMBERS FOR FUN

<table>
<thead>
<tr>
<th>PROBE</th>
<th>Λ_{NP} for (N)MFV NP</th>
<th>Λ_{NP} for gen. FV NP</th>
<th>No. of BB pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ from $B\rightarrow DK$</td>
<td>$\Lambda \sim O(10^2 \text{ TeV})$</td>
<td>$\Lambda \sim O(10^3 \text{ TeV})$</td>
<td>$\sim 10^{18}$</td>
</tr>
<tr>
<td>$B\rightarrow \tau\nu$ 1)</td>
<td>$\Lambda \sim O(\text{TeV})$</td>
<td>$\Lambda \sim O(30 \text{ TeV})$</td>
<td>$\sim 10^{13}$</td>
</tr>
<tr>
<td>$b \rightarrow ssd\bar{d}$</td>
<td>$\Lambda \sim O(\text{TeV})$</td>
<td>$\Lambda \sim O(10^3 \text{ TeV})$</td>
<td>$\sim 10^{15}$</td>
</tr>
<tr>
<td>β from $B\rightarrow J/\psi K_S$ 2)</td>
<td>$\Lambda \sim O(50 \text{ TeV})$</td>
<td>$\Lambda \sim O(200 \text{ TeV})$</td>
<td>$\sim 10^{12}$</td>
</tr>
<tr>
<td>K-K mixing 3)</td>
<td>$\Lambda > 0.4 \text{TeV}(6 \text{TeV})$</td>
<td>$\Lambda > 10^3 \text{TeV}(10^4 \text{TeV})$</td>
<td>now</td>
</tr>
</tbody>
</table>

1) assuming no err. on f_B, so that ultimate th. error just from ew. corr.
2) assuming pert. error estimates $\delta\beta/\beta \sim 0.1\%$
3) bounds for ReC_1 (Im C_1) from UTfitter 0707.0636
CONCLUSIONS

• γ extraction from $B \to DK$ is theoretically clean
 • irreducible theory error on γ is below $\delta\gamma/\gamma < 10^{-6}$
• measuring γ is important
 • standard candle of the SM
 • search for NP
BACKUP SLIDES
SOME SPECIFIC IDEAS FOR LHCB

- a "method": a subset of final states allowing for extr. of γ
- multibody $B^0 \rightarrow DK^+\pi^-$
 - contains flavor specific $D^*_2 (2460) \rightarrow \bar{D}^0 \pi^-$
 - interf. with other resonances (e.g. $B^0 \rightarrow DK^*$) gives γ
- many choices for $D \rightarrow f$ still
- equivalent of GLW does not need CP-odd $D \rightarrow K_S \pi^0$ decays (that is difficult for LHCb)

Gershon, Williams, 0909.1495
MORE ON

\[B^0 \rightarrow D K^+ \pi^- \]

- compared to quasi-two-body \(B^0 \rightarrow D K^{*0} \)
- at least 50% better sensitivity to \(\gamma \)
- extension of model indep. method possible
- double Dalitz plot analysis \(B^0 \rightarrow D K^+ \pi^- \)
 \[\rightarrow (K_S \pi^+ \pi^-)_{D} K^+ \pi^- \]
- \(B^0 \rightarrow D K^+ \pi^- \) Dalitz still poorly known
- estimates using reasonable models: 20 annual yields of LHCb \(\Rightarrow O(1^\circ) \) error

Gershon, Williams, 0909.1495
Gershon, Poluektov, 0910.5437