CKM GAMMA FROM TREE DECAYS

JURE ZUPAN U. OF CINCINNATI

Implications of LHCb measurements and future prospects, 16-18 April 2012, CERN

TAKE HOME MESSAGE

- γ from $B \rightarrow DK$ is theoretically extremely clean
- it is an interesting observable to measure precisely

OUTLINE

- brief outline of the $B \rightarrow DK$ methods
- what is the ultimate theory error?
 - electroweak corrections

Pirjol, JZ, to appear

• "the ultimate test of (MFV) NP"

OBTAINING GAMMA

use interference between $b \rightarrow c\bar{u}s$ and $b \rightarrow u\bar{c}s$

MANY FINAL STATE CHOICES

see also talk by Stefania Ricciardi

Gronau et al (2004)

Poluektov et al. [Belle] (2004)

LHCb workshop, CERN, Apr 18, 2012

- possible choices for final state *f* in *D* decay
 - CP- eigenstate (e.g. $K_S \pi^0$) Gronau, London, Wyler (1990,1991)
 - flavor state (e.g. $K^+\pi^-$) Atwood, Dunietz, Soni (1997)
 - singly Cabibbo suppressed (e.g. *K**+*K*⁻) Grossman, Ligeti, Soffer (2002)
 - many-body final state (e.g. $K_S \pi^+\pi^-$) Giri, Grossman, Soffer, JZ (2003)
- other extensions:
 - many body *B* final states: $B^+ \rightarrow DK^+\pi^0$, $B^0 \rightarrow D\pi^-K^+$ Aleksan, Petersen, Soffer (2002), Gershon (2008), Gershon, Poluektov (2009)
 - use D^{0*} in addition to D^0 Bondar, Gershon (2004)
 - use self tagging D^{0**} , D_2^{*-} Sinha (2004) Gershon (2008)
 - neutral B_d, B_s decays (time dep., time-integr., self-tag) Aleksan, Dunietz, Kayser (1992), Kayser, London (2000), Atwood Soni (2003), Fleischer (2003),

J. Zupan CKM gamma from tree decays

WHY THE METHODS WORK

- many methods: GLW, ADS, Dalitz,...
- one has ~N_DN_B measurements, but ~N_D+N_B unknowns
 - \Rightarrow can determine γ
- does it make sense to split into "methods"?
 - we are really interested in γ
 - combined analysis wins
- "only" benefit of splitting: compare diff. γ
 - check for NP or systematics

WHY MEASURE GAMMA?

WHY MEASURE GAMMA?

- now (= in the age of LHCb and upcoming SFF)
 - theoretically clean extraction of the CKM weak phase
 - standard candle of the CKM
- unlikely there is NP in γ (at present precision)
 - search for NP by comparing to other observables
 - can test for consistency in γ extraction in
 B→*DK* itself

TEST FOR NP IN DECAY AMPLITUDES

extraction of *γ* has a built in test for presence of extra NP in decay ampl.

$$A(B^{-} \to f_{D}K^{-}) \propto r_{D}e^{i\delta_{D}} + r_{B}e^{i\delta_{B}-\gamma} + r'_{B}e^{i\delta'_{B}-\gamma'}$$
$$A(B^{+} \to f_{D}K^{+}) \propto r_{D}e^{i\delta_{D}} + r_{B}e^{i\delta_{B}+\gamma} + r'_{B}e^{i\delta'_{B}+\gamma'}$$

• thus for B^+ and B^- different r_B $r_{B^+} \rightarrow |r_B e^{i\delta_B + \gamma} + r'_B e^{i\delta'_B + \gamma'}|; r_{B^-} \rightarrow |r_B e^{i\delta_B - \gamma} + r'_B e^{i\delta'_B - \gamma'}|$

J. Zupan CKM gamma from tree decays

TEST OF DIRECT CPV NP IN B→DK

• there is NP in $B \rightarrow DK$ amplitude if

$$r_{B^-} \neq r_{B^+}$$

• Belle and Babar already measure this

$$\begin{aligned} x_{\pm} &= r_B \cos(\gamma \pm \delta_B) \\ y_{\pm} &= \pm r_B \sin(\gamma \pm \delta_B) \end{aligned}$$

• even, if $x_+^2 + y_+^2 = x_-^2 + y_-^2$ still possible that γ is shifted

J. Zupan CKM gamma from tree decays

IN THE (FAR) FUTURE

- another test: γ from $B^{\pm} \rightarrow DK^{\pm}$, $B^{\pm} \rightarrow DK^{*\pm}$, $B^{\pm} \rightarrow DK^{*\pm}$, $B^{\pm} \rightarrow D^{*}K^{\pm}$, $B^{0} \rightarrow DK^{0}$,... all need to coincide!
 - NP with contributions of different chirality could for instance give different shifts in γ
- since the extraction of gamma theoretically clean
 - can be used to search for high scale NP when a lot of statistics
- next: what is the scale we could in principle probe?
 - how clean? what is the theory error?

THEORY ERRORS ON EXTRACTING GAMMA

THEORY ERRORS

- assume SM
- several sources that can induce a shift in γ
- most can be avoided
 - with more statistics
 - example: Dalitz plot theory error
 - by modifiying equations
 - example: errors from $D \overline{D}$ mixing
- remain: errors from electroweak corrections

J. Zupan CKM gamma from tree decays 13 LHCb workshop, CERN, Apr 18, 2012

$D-\bar{D}$ **MIXING**

- in SM $D \overline{D}$ mixing is CP conserving \Rightarrow the effect is small
- if *D* decay info. is from flavor tagged *D* (i.e. from $D^* \rightarrow D \pi$)
 - then only important changes are in the interf. term
 - change in relative phase: $\delta_f \rightarrow \langle \delta_f \rangle$ Grossman, Soffer, JZ, 2005
 - dilutes the interference: $\dots \rightarrow \dots \times e^{-\varepsilon}$
- the effect on γ is $\mathcal{E} \sim \mathcal{O}(x_D^2/r_f^2, y_D^2/r_f^2)$
 - applies e.g. to GLW, ADS
 - even for doubly Cabibbo supp. *D* decays the shift $\Delta \gamma < 1^{\circ}$
- in model indep. Dalitz analysis no changes needed, if everything from *B*→*DK*
 - one already fits for both $\langle \delta_f \rangle$ and ε by fitting for c_i , s_i

$D-\bar{D}$ **MIXING**

Bondar, Poluektov, Vorobiev, 1004.2350

- the effect potentially larger, if *D* decay info from CLEO ($\psi(3770) \rightarrow D\overline{D}$)
- the change since time integr. interv.: $t \in (-\infty,\infty)$
 - the shift in γ is now linear in x_D , y_D
 - but still small: $\Delta \gamma \le 2.9^{\circ} (\le 0.2^{\circ}, \text{ if } |A_D|^2 \text{ info. comes from } D^* \rightarrow D \pi$)
- most importantly: $D \overline{D}$ mixing effects can be incl. exactly if x_D , y_D precisely measured

OTHER ERRORS

- for γ from (untagged) $B_s \rightarrow D\phi$ the inclusion of $\Delta\Gamma_s$ depen. important
 - $\Delta \Gamma_s$ needs to be well measured

Gronau, Grossman, Soffer, Surujon, JZ, 2007

- QED radiative corrections
 - CP conserv., in principle no effect on γ
- the remaining (SM) theory error from

higher electroweak corrections

IRREDUCIBLE THEORY ERROR ON GAMMA

irreduc. theory error in SM introduced by ew.
 corrections that change CKM structure

Pirjol, JZ, to appear

- if only vertex corrections no effect on γ extr.
- no effect from Z exchange
- there is effect from box diagrams

J. Zupan CKM gamma from tree decays 17 LHCb workshop, CERN, Apr 18, 2012

IRREDUCIBLE THEORY ERROR ON GAMMA

- the shift on γ due to the box diagram
- dominant contrib. effectively due to *t* and *b* in the loop
- $b \rightarrow us\bar{c}$:
 - tree level ~ $V_{ub}V_{cs}^*$
 - box diagram~ $(V_{tb}V_{ts}^*) (V_{ub}V_{cb}^*)$
 - same week phase, does not induce $\delta \gamma$
- $b \rightarrow cs\bar{u}$:
 - tree level ~ $V_{cb}V_{us}^*$
 - box diagram~ $(V_{tb}V_{ts}^*) (V_{cb}V_{ub}^*)$
 - <u>different</u> week phase $\Rightarrow \delta \gamma \neq 0$

IRREDUCIBLE THEORY ERROR ON GAMMA

Pirjol, JZ, to appear

- we estimate it in two ways
- integrate both *t* and *b* at the same time
 - local operator, but large logs
- resum $log(m_b/m_W)$ but also nonlocal contribs
 - keep only local ones
- the precision suffices for our purposes
- irreducible theory error on γ is $\delta \gamma / \gamma < O(10^{-6})$
 - most likely even $\delta \gamma / \gamma \leq O(10^{-7})$

ULTIMATE TEST OF MFV

- how high NP scales can we probe using γ from $B \rightarrow DK$?
- assuming MFV: can probe $\Lambda \sim 10^2 TeV$
- assume gen. FV: can probe $\Lambda \sim 10^3 TeV$
- this is far future of course
 - $O(10^{18})$ $B\bar{B}$ pairs needed

SOME NUMBERS FOR FUN

			JZ,	1101.0134
PROBE	Λ _{NP} for (N)MFV NP	Λ_{NP} for gen. FV NP	No. of <i>BB</i> pairs	
γ from $B \rightarrow DK$	$\Lambda \sim O(10^2 \text{TeV})$	Λ~O(10 ³ TeV)	~10 ¹⁸	
$B \rightarrow \tau \nu^{1)}$	$\Lambda \sim O(\text{TeV})$	Λ~O(30 TeV)	~ 10 ¹³	
$b \to s s \bar{d}$	$\Lambda \sim O(\text{TeV})$	$\Lambda \sim O(10^3 \text{TeV})$	~10 ¹⁵	
β from $B \rightarrow J/\psi K_S^{(2)}$	Λ~O(50 TeV)	Λ~O(200 TeV)	~10 ¹²	
K-K mixing $^{3)}$	Λ>0.4TeV(6TeV)	$\Lambda > 10^{3}$ TeV(10 ⁴ TeV)	now	

1) assuming no err. on f_B , so that ultimate th. error just from ew. corr.

2) assuming pert. error estimates $\delta\beta/\beta \sim 0.1\%$

3) bounds for ReC_1 (Im C_1) from UT fitter 0707.0636

CONCLUSIONS

- γ extraction from $B \rightarrow DK$ is theoretically clean
 - irreducible theory error on γ is below $\delta \gamma / \gamma < 10^{-6}$
- measuring γ is important
 - standard candle of the SM
 - search for NP

BACKUP SLIDES

SOME SPECIFIC IDEAS FOR LHCB

- a "method": a subset of final states allowing for extr. of γ
- multibody $B^0 \rightarrow DK^+\pi^-$ Gershon (2008) Gershon, Williams (2009)
 - contains flavor specific $D_2^{*-}(2460) \rightarrow \bar{D}^0 \pi^-$
 - interf. with other resonances (e.g. $B^0 \rightarrow DK^{*0}$) gives γ
 - many choices for $D \rightarrow f$ still

• equivalent of GLW does not need CP-odd $D \rightarrow K_S \pi^0$ decays (that is difficult for LHCb)

J. Zupan CKM gamma from tree decays

24

LHCb workshop, CERN, Apr 18, 2012

MORE ON $B^0 \rightarrow DK^+\pi^-$

• compared to quasi-two-body $B^0 \rightarrow DK^{*0}$

Gershon, Williams, 0909.1495

- at least 50% better sensitivity to γ
- extension of model indep. method possible
 - double Dalitz plot analysis $B^0 \rightarrow DK^+\pi^ \rightarrow (K_S \pi^+ \pi^-)_D K^+\pi^-$ Gershon, Poluektov, 0910.5437
 - $B^0 \rightarrow DK^+\pi^-$ Dalitz still poorly known
 - estimates using reasonable models: 20 annual yields of LHCb $\Rightarrow O(1^\circ)$ error