

γ from trees: the principle

Interference between $b \rightarrow c$ and $b \rightarrow u$ amplitudes in decays such as

 $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$ when D^0 and \overline{D}^0 decay to common final state, f_D

- tree-level amplitudes only
- no penguin pollution, only one weak phase: γ

Other B and D hadronic parameters in play

r_R = relative magnitude of suppressed B-decay amplitude over favoured one

 $\delta_{\mathbf{R}} = B$ -decay strong phase difference

 r_{D} and δ_{D} similarly defined

Several methods to extract γ and other hadronic parameters from data (both TI and Time-Dependent)

- Hence, in principle, no theoretical uncertainties
- In practice, γ extraction benefits from external measurements and/or model for the charm parameters

γ before the *LHCb era*

- Impressive achievements from B-factories, well beyond design:
 - thanks to excellent experimental performance, but also to introduction of new powerful methods and to progress in understanding of the charm system
- CDF has set the first constraints on γ at hadron collider, demonstrating the capability of making measurements with fully hadronic processes in a harsh environment

The case for γ from trees is unchanged and increasingly compelling

- Still a most-wanted SM reference required to unravel *increasingly subtle* NP effects
 - Tree-level determination largely insensitive to New Physics
- Still the most poorly measured angle of the UT $\gamma=68^{+10}_{-11}^{\circ}$ (CKMFitter, 2011)

Smallest theoretical uncertainty but largest experimental error among all UT constraints!

One phase, many trees, many methods for extracting γ

- Many additional methods at LHCb
 - Large data sample size opens up possibilities with other rarer but very sensitive modes where large asymmetries are expected (such as $B^0 \to DK^{0*}$)
 - Excellent proper time-resolution allows time-dependent analyses with fast oscillating B_s modes (e.g., B_s -> D_sK^+)
 - All b-hadrons species are produced at LHC, including baryons, which will also contribute (e.g., $\Lambda_h \rightarrow D^0 \Lambda$)
- No method expected to dominate the sensitivity
 Redundancy will protect LHCb against malign choices of Nature (e.g., unlucky strong-phases).
- Final precision likely to be given by the combination of several methods

GLW: D to CP eigenstates

Gronau & London, PLB 253, 483 (1991);

Gronau & Wyler, PLB 265, 172 (1991)

ADS: D to CF and DCS quasi-flavour eigenstates

Atwood, Dunietz, & Soni, PRL 78, 3257 (1997),

Atwood, Dunietz, & Soni, PRD 63, 036005 (2001)

The dawn of the new era

arXiv:1203.3662 sub. to PLB

ADS/GLW results for $B^+ \rightarrow D(hh)K^+$

- Main challenge: Very small branching fractions of the sensitive modes (10⁻⁷)
- Main merits:
 - easiest topology ⇒large efficiency
 - Time-Integrated methods: exploit full statistical power of large bb crosssection at LHC

GLW Observables

GLW: A_{CP+} and R_{CP+}

LHCb uses only D CP+ eigenstates (K+K-, π^+,π^-) 2 observables:

CP asymmetry

$$A_{CP^{+}} = \frac{\Gamma(B^{-} \to D_{CP^{+}}K^{-}) - \Gamma(B^{+} \to D_{CP^{+}}K^{+})}{\Gamma(B^{-} \to D_{CP^{+}}K^{-}) + \Gamma(B^{+} \to D_{CP^{+}}K^{+})} = \frac{+2r_{B}\sin\delta_{B}\sin\gamma}{1 + r_{B}^{2} + 2r_{B}\cos\delta_{B}\cos\gamma}$$

Ratio

of partial widths
$$R_{CP^{+}} = 2 \frac{\Gamma(B^{-} \to D_{CP^{+}}K^{-}) + \Gamma(B^{+} \to D_{CP^{+}}K^{+})}{\Gamma(B^{-} \to D^{0}K^{-}) + \Gamma(B^{+} \to \overline{D^{0}}K^{+})} = 1 + r_{B}^{2} + 2r_{B}\cos\delta_{B}\cos\gamma$$

3 "unknowns": $r_{\rm B}$, $\delta_{\rm B}$, and γ ⇒ Has to be combined with ADS method

ADS observables

CP asymmetry for sup.

$$A_{ADS} = \frac{\Gamma(B^{-} \to D(K^{+}\pi^{-})K^{-}) - \Gamma(B^{+} \to D(K^{-}\pi^{+})K^{+})}{\Gamma(B^{-} \to D(K^{+}\pi^{-})K^{-}) + \Gamma(B^{+} \to D(K^{-}\pi^{+})K^{+})} = \frac{+2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin\gamma}{r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos\gamma}$$

Ratio of partial widths

$$R_{ADS} = \frac{\Gamma(B^{-} \to D(K^{+}\pi^{-})K^{-}) + \Gamma(B^{+} \to D(K^{-}\pi^{+})K^{+})}{\Gamma(B^{-} \to D(K^{-}\pi^{+})K^{-}) + \Gamma(B^{+} \to D(K^{+}\pi^{-})K^{+})} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos\gamma$$

Same 3 unknowns as GLW: r_{R} , δ_{R} , and γ $+ r_D$ and δ_D . Have to use external measurements:

$$r_{\rm D}$$
 (K π) = 0.0575 ± 0.0007 (HFAG averages) $\delta_{\rm D}$ (K π)= 202.0 ± 11.2°

$B^{\pm} \rightarrow Dh^{\pm}$ (h=K, π) analysis in brief

More details in recent CERN-EP seminar by M. John [https://indico.cern.ch/conferenceDisplay.py?confld=180554]

- $B^{\pm} \rightarrow DK^{\pm}ADS$ and GLW analyses simultaneously performed
- $B^{\pm} \rightarrow D\pi^{\pm}$ also included [yield 10x, much smaller interference]
- Select on bachelor PID (K/π) to separate $B^{\pm} \rightarrow DK^{\pm}$ from $B^{\pm} \rightarrow D\pi^{\pm}$

Crucial ingredients:

I. PID

II. Tracking and vertexing

- Simultaneous fit 16 independent data samples:
 - **= 2** (B charge, +/-)
 - **x 2** (bachelor ID, K/π)
 - **4** (D decays: $K\pi$ fav, $K\pi$ suppressed, KK, $\pi\pi$)

$B^{\pm} \rightarrow D(K^{\pm}\pi^{-})h^{\pm}$ (favoured mode)

High signal yields

Low combinatorial level

Partially reconstructed decays contribute to low mass

Data-driven estimation of mis-ID component

$B^{\pm} \rightarrow D(K^{\dagger}\pi^{+})h^{\pm}$ (suppressed mode)

Large negative asymmetry in DK: A_{ADS} (K)= (-52 ± 15 ± 2)% [4 σ] Hint of positive asymmetry in D π : A_{ADS} (π)= (14.3 ± 6.2 ± 1.1)% [2.4 σ]

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Average

HFAG

 $R_{ADS} = r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma$

⇒ Important to constrain r_B

 0.015 ± 0.002

$B^{\pm} \rightarrow D(K^{+}K^{-})h^{\pm}$

$$A_{CP+}$$
 (KK)= (-14.8 ± 3.7 ± 1.0)%

$$B^{\pm} \rightarrow D(\pi^{+}\pi^{-})h^{\pm}$$

$$A_{CP+}(\pi\pi) = (-13.5 \pm 6.6 \pm 1.0)\%$$

GLW Results

What about γ ?

Multiple ambiguities in the extraction of all unknowns=> most stringent constraints on ADS/GLW parameters do not translate immediately in the most stringent constraints on gamma

Coming soon..

ADDITIONAL MEASUREMENTS FROM "CLASSIC" METHODS

Towards a ADS/GLW measurement with $B^0 \rightarrow D^0(hh)K^{*0}$

Self-tagged . TI analysis similar to $B^+ \to D(hh)K^+$. Larger r_B (3x) \Rightarrow larger interference effects Interfering diagrams both colour suppressed \Rightarrow Low yields

First step: measurement of $B_s \rightarrow DK^{*0}$ B.F.

Favoured B_s ADS mode and sensitive suppressed B_d mode share same final state:

 B_s fav. yield ~ 20 X B_d sup.

Merit: small $r_B(B_s)$, no interference,

good as control sample and normalisation

Challenge: background,

In addition $B_s \rightarrow D^{*0}K^{*0}$ (main challenge!)

<u>LHCb. PLB 706 (2011) 32. arXiv:1110.3676</u>

$$\mathcal{B}(\overline{B}_s^0 \to D^0 K^{*0}) = (4.72 \pm 1.07 \pm 0.48 \pm 0.37 \pm 0.74) \times 10^{-4}$$

$$stat. \quad syst. \quad f_s/f_d \quad From B.F.$$

$$B \to D\rho$$

- •Mode can be efficiently reconstructed
- ■Good B_d/B_s separation, low combinatorial
- Progressing towards GLW/ADS analysis with 2011 data
- ■Expect ~300 events from B_d favoured ADS decay in 1fb⁻¹

GGSZ: γ from B+ \rightarrow D(K_Sh+h-)K+

Exploit different interference pattern over *D-Dalitz* plots from B⁺ and B⁻ decays:

requires an amplitude fit and a model for D decay

or external input on δ_D over the Dalitz plane (available from CLEO-c) for a model-independent approach

Two approaches: unbinned model-dependent and binned model-independent pursued in parallel at LHCb

Specific LHCb challenge for this decays:

K, reconstruction

2/3 decay downstream (DD) of vertex detector (but have hits in downstream tracker stations)

$B^+ \rightarrow D(K_S h^+ h^-)K^+$

Expect ~600 events in 1/fb (roughly half size wrt Belle)
First CP results in the summer

$B_s \rightarrow D_s K$: time-dependent analysis

Both colour allowed transition: large interference expected

Sensitive to $\gamma + \phi_s$

- 4 time-dependent rates:
 - $\blacksquare \quad \mathsf{B}_{\mathsf{S}} \to \mathsf{D}_{\mathsf{S}}^{+} \mathsf{K}^{-}$
 - \blacksquare $\overline{B}_s \rightarrow D_s^+ K^-$
 - $\bullet B_s \rightarrow D_s^- K^+$
 - $\bullet \quad \overline{B}_s \rightarrow D_s^- K^+$
- 2 CP-asymmetries

Crucial:

- -proper time resolution ~50 fs adequate to resolve fast Bs oscillation
- -Tagging power: LHCB-CONF-2011-050
 - -opposite side tagger $\varepsilon D^2 = 3.2 \pm 0.8\%$
 - -additional power from same- side tagger

First step: PLB 709 (2012) 177, arXiv: 1112.4311 (36 pb⁻¹)

precise determination of Δm_s from $B_s \rightarrow D_s \pi$

 $\Delta m_s = 17.63 \pm 0.11 \pm 0.02 \text{ ps}^{-1}$

NEW measurement of the branching fraction (arXiv 1204.1237)

$$\mathcal{B}(B_s^0 \to D_s^- K^+) = (1.90 \pm 0.12 \pm 0.13^{+0.12}_{-0.14}) \times 10^{-4}$$

$$B^{-} \longrightarrow D^{0}K^{-}$$

$$D^{0} \longrightarrow K^{-}\pi^{+}\pi^{-}\pi^{+}$$

$$D^{0} \longrightarrow K^{-}\pi^{+}\pi^{0}$$

$$D^{0} \longrightarrow K^{-}K^{+}\pi^{-}\pi^{+}$$

$$D^{0} \longrightarrow \pi^{-}\pi^{+}\pi^{-}\pi^{+}$$

$$B^- \rightarrow D^0 K^- \pi^+ \pi^-$$

$$B_s \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$$

$$B_S \rightarrow D^0 K^+ K^-$$

$$B^0 \rightarrow D^0 K^- \pi^+$$

Not exhaustive list

$$\Lambda_b \to D^0 p K^-$$

Longer term

MORE MULTI-BODY MODES

$B^- \rightarrow D(K^-\pi^+)K^-\pi^+\pi^-$

Efficient reconstruction in high track-multiplicity modes

First observation (9σ) of Favoured "ADS" mode

arXiv:1201.4402

$$\frac{\mathcal{B}(B^- \to D^0 K^- \pi^+ \pi^-)}{\mathcal{B}(B^- \to D^0 \pi^- \pi^+ \pi^-)} = (9.4 \pm 1.3 \pm 0.9) \times 10^{-2}$$

Expect ~2k signal events in 2011 data 1 fb⁻¹ [~1/3 of B⁻ \rightarrow D(K⁻ π ⁺)K⁻]

$B^- \rightarrow DK^-\pi^+\pi^-$

Variation of B hadronic parameters over phase-space

 \Rightarrow different approaches for extracting γ :

•Quasi-two body: Modified ADS, GLW observables; needs "coherence factor"

$$e.g., R_{ADS} = r_s^2 + r_D^2 + 2r_s r_D \kappa \cos(\delta_s + \delta_D) \cos \gamma$$

$$\kappa \in [0,1]$$

$$\kappa e^{i\delta_s} = \frac{\int |\overline{A}| A |e^{i(\arg(\overline{A}) - \arg(A))} dPS}{\sqrt{\int |\overline{A}|^2 dPS} \sqrt{\int |A|^2 dPS}}$$

Potential dilution of interference due to different intermediate resonances with different strong-phases contributing to final state, e.g. $B^- \rightarrow DK_1(1270)$

K = 1 in the two-body limit – one single resonance contributing [PLB 557 198 (2003)]

- Amplitude analysis
- Binned: Quasi-two body approach in high-coherent bins of the 4-body phase-space

$\Lambda_b \rightarrow D^0 ph^- (h=\pi,K)$

[LHCb-CONF-2011-036]

Conclusions

A new era for γ has just started at LHCb!

- Recent results from simultaneous GLW/ADS analysis with B⁺ → DK⁺
 - Observation of ADS sensitive mode firmly established (10 σ)
 - First observation of direct CPV in GLW and ADS (5.8 σ , combined)
 - Important milestone towards a precise determination of γ at LHCb
- Analyses for many other promising decay modes under way. First step: results on branching ratios.
- High reconstruction efficiency and high purity even for modes with high track multiplicity.
- No single method dominates sensitivities. Precision from combination of several modes.
- Expect LHCb to improve on B-factory precision with 2011+2012 data-set.

ADDITIONAL MATERIAL

R_{ADS} Averages

A_{ADS} Averages

