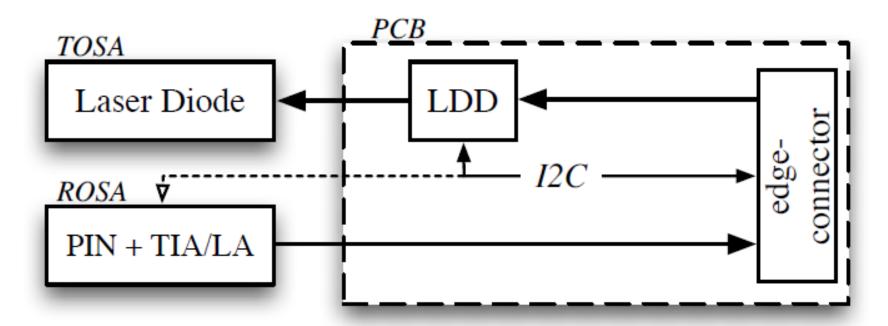

Common Optical Link

Dirk Wiedner 16th February 2012

LHCb overview

+TFC system


Current LHCb optical links

- ▶ 1.1 MHz readout O(6000) links
 - +40 MHz L0 trigger readout O(2000) links
- ▶ GOL @ 1.6 Gb/s serializer + laser driver
- VCSEL
 - ULM photonics
 - SMA 850nm MM
- Or Agilent 12-way transmitter HFBR-772B
- Agilent 12-way receivers HFBR-782B
 - TLK2501 de-serializers
- MM-fiber 125/50 μm
 - FO-networks, DRAKA etc.
- TFC system SM fiber @ 160 Mb/s

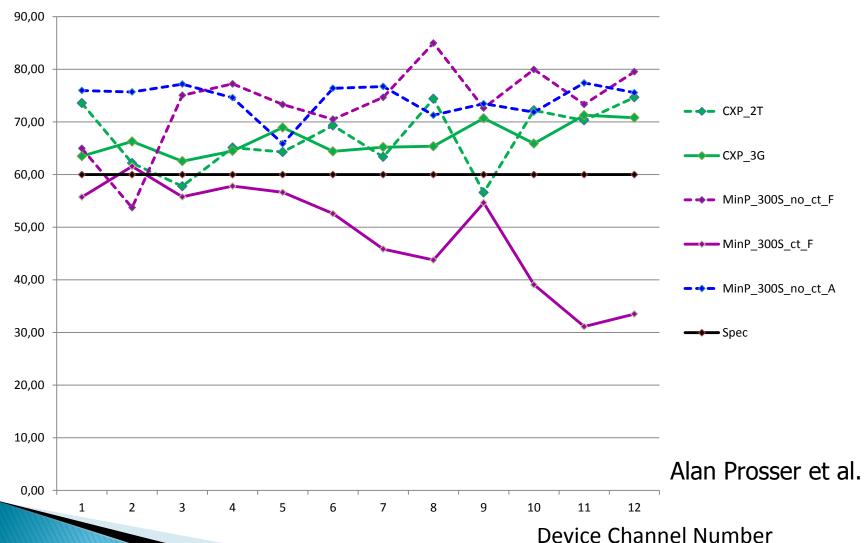
LHCb 40 MHz upgrade links

- 40 MHz for the entire detector
 - O(12000) links
- ▶ GBT @ 3.2Gb/s t.b.d.
 - Data + TFC + ECS
 - FPGAs with fast link I/O in low rad regions
- Versatile link
 - Transceiver 850nm MM
 - Dual transmitter 850nm MM
 - Transceiver 1310 nm SM (anyone?)

Versatile link transceiver

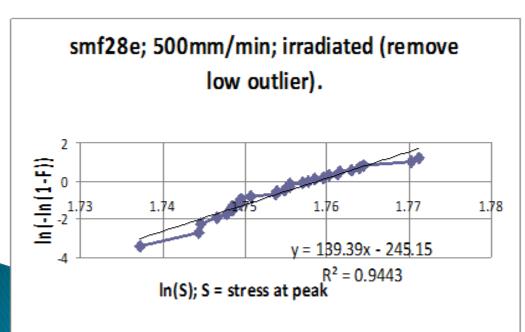
- Transmitter Optical Sub-Assembly (TOSA)
- Laser Diode Driver (LDD)
- Limiting Amplifier (LA)
- TransImpedance Amplifier (TIA)
- PIN photodiode

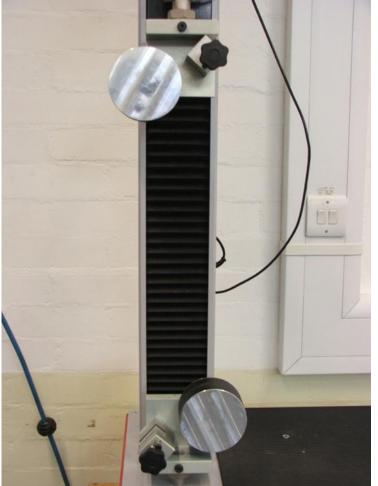
Versatile link status


- Common R&D almost complete
 - VTRx and later VTTx
 - Optical tests
 - Mechanical tests
 - Irradiation of active and passive components
 - Environmental test
 - System tests (BER etc.)

Some tests exceed LHCb needs

...but might proof useful


Optical tests


Eye Opening

Mechanical fiber stress test

- Fiber from Corning and Draka
 - Irradiated
 - Pull test
- John Wilson et al.

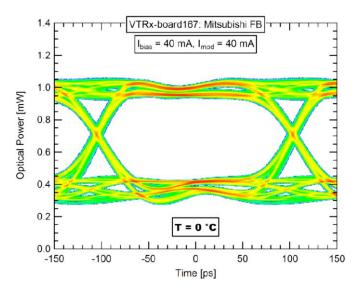
Irradiation tests of commercial components

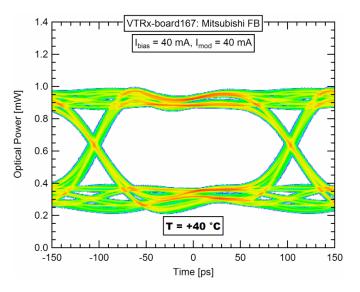
- TI laser driver
 - ONET1101L
 - 10 krad/h
 - Ok. At 900 krad
- 4-channel QSFP
 - AFBR-79Q4Z
 - 10 krad/h
 - Errors from 75 krad

Annie Xiang et al.

Irradiation tests of commercial components

- TI laser driver
 - ONET1101L
 - 10 krad/h
 - Ok. At 900 krad
- 4-channel QSFP
 - AFBR-79Q4Z
 - 10 krad/h
 - Errors from 75 krad




Annie Xiang et al.

Environmental test

- VTRx jitter measurements
 - VTRx 131:
 - ONET1101L & FP TOSA
 - Rx side measurement
 - Temperature testing of VTRx –
 Eyes

Jan Troska

R&D completion March 2012

- CERN
- Investigate options
 - TOSA SM (VCSEL/EEL)
 - PIN MM-Tk (GaAs/InGaAs)
- Gamma irradiation test
- Neutron irradiation test
- Environmental tests
 - EMI/Crosstalk, B-field, Zthermal
- Opto connector block
 - Variants (printed, molded and machined)
 - Materials
 - Selection
- VTRx flavours
 - Flat connector block
 - VTTx
- GB ASICs test and integration
 - GBLD V4
 - GBTIA V2
 - GBTIARosa V2
- VTRx FMC
- Documentation

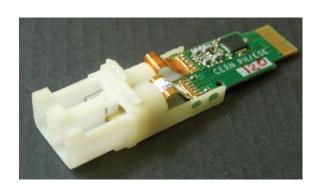
Passives

- Cable architectures options and specs
- Cable test procedures
- Tests
 - Fibre pull tests
 - Cable irradiation tests
- Documentation
 - Connector test writeup
 - Microbend test writeup
 - Bandwidth

Back End

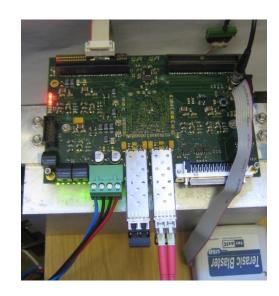
- Optical engine
 - Survey
 - Characterizat
 - FMCs
- SM Tx
 - High power
 - Arrays
- MM Tx QSFF
- Documentation

System

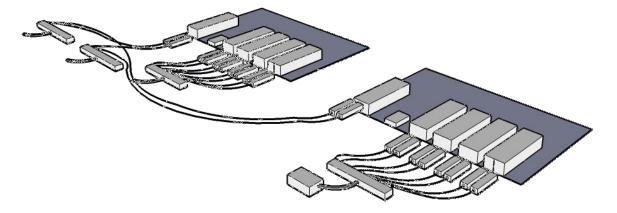

- Explore margins (stressed eyes, temperature,...
- Raise density at backend
- Demonstrate system based on VTTx
- Explore compatibility with higher level system (
- Documentation

Versatile link status

- Common R&D almost complete
 - VTRx and later VTTx
 - Optical tests
 - Mechanical tests
 - Irradiation of active and passive components
 - Environmental test
 - System tests (BER etc.)
- Some tests exceed LHCb needs
 - ...but might proof useful
- Next steps
 - Tendering


+user test systems

Custom R&D


LHCb optical link activities

- Many Institutes started R&D
 - OT example:
 - Altera FPGA based front end at HD (Christian F.)
 - Readout board at Dortmund (Stefan S.)
 - Actel FPGA based front end at NIKHEF (Tom S.)
 - TELL40
 - Marseille
 - Lausanne
- Important to proceed together

Tendering for LHCb

- ▶ TOSA MM: 11000
- ▶ ROSA MM: 1000
- VTTx MM: 5000 ?
- VTRx MM: 1000
- ▶ 12Rx MM: 1000 ?
- Fiber ??
- Specification
- Market survey
- Qualification

Custom R&D

- Detector specific versatile link components and architecture
 - VTRx and/r VTTx PCB
 - Optoblock
 - Assembly vs. reference design
- Low power VTRx
- 10Gb/s opto engine
- Emergency technologies
 - Si photonics ...

Summary

- LHCb 40 MHz upgrade
 - extra bandwidth
 - Higher radiation levels
- Versatile link project
 - 5 10 Gb/s optical link system
 - Common R&D achieved
 - Most tests concluded
- LHCb versatile link next step
 - System tests by users
 - Tendering
 - Specific implementations