Interface with I2C @ SCA

- Short summary of discussion with Kostas Kloukinas (this morning)
- GBT-SCA will be the interface for FE ECS
 - GBT-SCA is in IBM 130 nm:
 - 1.2 V core and up to 2.5 V for IO (currently)
 - However IO @ 3.3 V is possible using extra masks (thicker gate oxide for IO MOS)
 - I2C slow signals are connected to fast digital electronics
 - Problems (glitches, etc) observed: pads with hysteresis are required.
- What happens if to be connected to 3.3 V chips?
 - Currently GBT-SCA CAN NOT be directly connected to 3.3 V chips
 - Even for I2C which is in open drain configuration
 - With 3.3V pull-up, logic 1 will turn on protection diodes of 2.5 V IO
 - It is possible to use commercial level shifters but they will have to be qualified to operate in radiation (TID and SEL).
 - Preferred solution would be have 3.3 V IO at SCA
 - No technical problem but some extra cost
 - Calo is interested on that ! Anybody else ???

• Same problem for any other SCA signal: what about reset ? GBT IO?

February 16 th 2011

LHCb Electronics Upgrade Meeting

Interface with I2C @ SCA

- Short summary of discussion with Kostas (this morning)
- GBT to SCA interface (e-link)
 - 3 differential SLVDS pairs
 - Swing: +-200 mV and CM is 200 mV
 - Limited length and good ground required
- I2C slave implementation, two options
 - Synchronous
 - If a fast and stable clock (not SCL) is available: sample SCA and SCL lines
 - Synchronous state machine (x3 for TMR)
 - More robust but more noisy
 - Asynchronous
 - Asynchronous state machine
 - Trickier implementation: have to deal with delays in protocol transitions
 - But lest noisy (no transitions during data taking)
 - CERN has silicon proofed RTL code for both, could be available. Contact:
 - Asynchronous: Ken
 - Synchronous: Kostas

February 16th 2011

LHCb Electronics Upgrade Meeting