Introduction

- The present calorimeter ECS is mainly based on SPECS
 - Front-end, LED pulsing, HV, Integrators
- We suppose that we will keep the rest unchanged
 - Power supplies (Maraton), Turbines, HCAL rad. Source (CanBus)
- SPECS will probably not be supported for the upgrade
 - Do not want to be alone to maintain SPECS
 - Follow the overall collaboration $\rightarrow \text{GBT}$
- This is not a problem for systems which have to be re-designed
 - We would like to keep some of our boards which are based on SPECS

Barcelona/Orsay/Annecy

The cases

- 3 cases :
 - 1) Electronics in FE crates and to be re-designed (FEB, control board)
 - 2) Electronics in FE crates kept and based on a SPECS slave (TVB)
 - 3) Electronics kept and based on a SPECS mezzanine (e.g. HV)
- We have to find a "GBT solution" for all of these cases

SOL40 to FE

SOL40 to FE-CALO

TFC protocol to FE-CALO

BXID in FE-CALO

ECAL/HCAL Backplane Crate ressources

GBT on Calo Control Board

ECS register FE-CALO

ECS register FE-CALO

Case 1 : New electronics in crate

- Backplane is kept as is but many lines are not necessary anymore
 - Use them for ECS point to point connections
- A new control board must be designed \rightarrow GBT-ECS fibre connection
 - GBT receiver on the control board
 - Propagate e-links on the backplane (SVLS @80MHz \rightarrow to be tested!)
 - Receive the signal with a GBT-SCA chip on the boards (FEB)
 - Generates SPI and // bus for slow control on the FE boards

Case 2 : Old electronics in crate (SPECS Glue)

- Some boards should be kept
 - ECS input is currently SPECS bus
 - Replace the signal from SPECS frame to I2C frame
 - This is not obvious : SPECS is here a mono-directional SPECS !
 - May have to add a FPGA on Control board to make it transparent for the GBT
 - Firmware has to be written
 - Reprogram the SPECS slave to make it a I2C→I2C transmitter (Firmware)
 - The board directly receives I2C from the control board
 - GBT-SCA on the control board
 - Could this solution also be used for case 1?

Case 3 : SPECS Mezzanine

- The SPECS mezzanine have to be replaced by a "GBT equivalent"
 - This would consist in replacing the SPECS mezza. by a GBT one
 - Yuri Guz from the calorimeter group volunteered to realize this
 - Difficulties : GBT frequency, power supply, signal levels,...

Conclusion

- Those are just ideas
 - Deeper thinking with experts of the different boards is needed
 - Preliminary tests are mandatory (usage of the backplane for e-link, clock, ...)
 - This is heavily connected with the control board design
- Could imagine several alternatives and variations
 - It could be safer to have a bi-directional GBT link per FEB
 - But costs increases \rightarrow not the baseline
- Plan to use SPI on the FE board
 - Block already available (LAL)
 - SPI with addressing and chip select to avoid long frames:
 - Address: 7 bit for register selection
 - Chip select: should be generate externally
 - More than 10 chip select signals needed, not enough in GBT-SCA
 - GBT parallel bus could be used to generate chip selects
 - Asynchronous command
 - Discussion with GBT experts has started
- FPGA for ECS needed on the FEB
 - Reprogram the one of the TVB