

The LHCb Upgrade

Plamen Hopchev, LAPP (Annecy) & CERN on behalf of the LHCb Collaboration

International Conference on New Frontiers in Physics

10-16 June 2012 Kolymbari, Crete, Greece

Outline

> LHCb overview

> Motivation and goals of the LHCb upgrade

Detector upgrade

- Precision CP violation and rare decay measurements of charm and beauty hadrons: LHCb overview: see talk of U. Egede
 - Test the Standard Model
 - Indirect search for New Physics

Forward spectrometer: $2 < \eta < 5$ *

Detect a large fraction of the $b\overline{b}$ -pairs

- Search for the effects of New Physics in CP-violation and rare decays using FCNC processes
 - New Physics enters through loop diagrams (boxes and penguins)
- ***** Improve the precision of CKM parameters, using tree and loop processes

- ♦ CP-violation see talks of N. Lopez March and A. Martens
 - B_s oscillation phase ϕ_s
 - CKM angle γ in trees and loops
 - CP asymmetries in charm decays

- * Rare decays see talk of B. Sciascia
 - Helicity structure in $B_d \to K^* \mu \mu$, $B_s \to \phi \gamma$
 - FCNC in loops: $B_{d,s} \rightarrow \mu\mu$, $D \rightarrow \mu\mu$

see talk of A. Contu Particle production studies, EW & QCD physics, exotic searches (long-lived particles, hidden valley, Majorana neutrinos, ...) and more

* In 2011 and 2012 operate at L ~ $4x10^{32}$ cm⁻²s⁻¹ (nominal L: $2x10^{32}$ cm⁻²s⁻¹)

- Luminosity leveling
- Stable trigger and pile-up ~ 1.5 (nominal pile-up: 0.4)
- About 99% of the detector channels operational
- Data taking efficiency > 90%
- Ageing of detector as expected

	2011	2012
L0 output [MHz]	0.85	1.0
HLT output [kHz]	3	4.5
Recorded Iuminosity [fb ⁻¹]	1.0	Until 10/06: 0.5 Goal: 1.5

- ***** Overall: great performance of LHC and LHCb
- ♦ Plan to collect \geq 5 fb⁻¹ before 2018 (LHC LS2)
 - Sufficient to perform *many* (more) world-best measurements
- * However, up to now no striking deviations from the SM
 - Will need even better precision for optimal comparison with the theoretical predictions → can be achieved with more statistics (many measurements not limited by systematics)
- Design limitations of current detector
 - Read-out network (1 MHz readout)
 - Tracking performance at larger pile-up
- Note: LHC has demonstrated great flexibility, providing the operation conditions needed by LHCb

- Reach experimental precision in key observables comparable to the theoretical uncertainty
 - Increase the annual yield: x10 for leptonic and x20 for hadronic channels (wrt 2011)
 - Collect > 50 fb⁻¹ at L~1x10³³ cm⁻²s⁻¹ (detector able to sustain L up to $2x10^{33}$ cm⁻²s⁻¹)
- Section 2 Contraction 2 Con

Projected sensitivities (stat. errors only) [LHCb Framework TDR]

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	$6.4 \times 10^{-3} \ [18]$	$0.6 imes 10^{-3}$	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	—	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	—	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	—	0.09	0.02	< 0.01
currents	$ au^{ ext{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	—	5~%	1~%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25%[14]	6%	2~%	7~%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV}^2/c^4)$	0.25[15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25%[16]	8%	2.5%	$\sim 10 \%$
Higgs	${\cal B}(B^0_s o\mu^+\mu^-)$	$1.5 \times 10^{-9} \ [2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 o \mu^+ \mu^-) / \mathcal{B}(B^0_s o \mu^+ \mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10 12^{\circ} [19, 20]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	—	11°	2.0°	negligible
angles	$eta \left(B^0 ightarrow J/\psi K^0_S ight)$	$0.8^{\circ} \ [18]$	0.6°	0.2°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3} [18]$	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	_

The LHCb upgrade concept

Current LHCb trigger – limitation at high L

- * Only Calorimeter and Muon data is available at L0
 - Use E_T / p_T cuts to select signal and reduce background
- * The full event data of up to 1 MHz of events is readout and sent to the HLT
- ***** At the HLT more refined selections are made
- ***** Up to 4-5 kHz of events can be written to disk
- At higher luminosity need to increase the L0 E_T / p_T thresholds to stay within the allowed 1 MHz

Decays with muons: linear gain

Fully hadronic decays: saturation

- To be able to fully profit from higher luminosity:
 - Upgrade the complete detector read-out to 40 MHz
 - Use software-only trigger
 - foresee ~10 MHz of LLT with an initial (smaller) CPU farm
 - Increase the output rate to 20 kHz
- Challenging requirements to the detectors FE electronics and the read-out infrastructure
- Expected improvement to signal efficiencies with the upgraded trigger, assuming $L=1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

LLT-rate (MHz)	1	5	10
$B_s \to \phi \phi$	0.12	0.51	0.82
$B^0 \to K^* \mu \mu$	0.36	0.89	0.97
$B_s \to \phi \gamma$	0.39	0.92	1.00

Detector Upgrade Overview

VELO

Replace the current detector

 Requirements: segmentation, data rate, rad. hardness, material budget

* Two options under investigation

- Pixels: "VELOPIX" chip with 55x55 µm pixels
- Strips: Proven design, reduced strip pitch (~30 µm), more strips

* R&D programme:

- Module layout and mechanics
- Sensor material: planar or 3D Si, diamond cooling substrate
- Front-end electronics

Downstream Tracking Detectors (1)

*** TT and IT:**

- Must be replaced as the FE electronics are "integrated" with detector
- TT: for optimal operation in upgrade environment consider smaller inner radius and better vertical segmentation

* Two options under consideration:

- Continue using Si-strips
 - Long experience & proven
 - Share FE chip with VELO strips option
- Scintillating fibres + SiPM
 - Main advantage: material budget (cooling and electronics outside acceptance)
 - Can develop common readout electronics with RICH
- * OT: can keep existing detector, except in the region closest to the beamline. Needs new FE electronics (40 MHz readout).

Downstream Tracking Detectors (2)

Two possible layouts of the T-stations

I. Larger (than current) IT

II. Scintillating fibres at the central part

- Fibres with diameter 0.25 mm
- 128-channel SiPM at top/bottom of the detector
- Active R&D programme under way
 - Module construction
 - Radiation hardness of fibres and SiPM
- In addition: a part of OT can be replaced by Sci. Fi modules with thick (1mm) fibres

Particle ID Detectors

- Essential for the reconstruction of hadronic decay modes
- ***** Keep the current RICH detectors
 - Need to replace photon detectors (40 MHz readout). Two options:
 - MaPMTs (baseline): consider squareshaped photon detectors
 - new HPDs with external readout

MaPMTs (Hamamatsu)

Calorimeters

* Keep the current ECAL and HCAL detectors

- Modules in the inner region of ECAL may need to be replaced (radiation damage)
- PM gain will be reduced (higher Luminosity)
- Preshower and Scintillating Pad Detector will be removed
 - In the HLT the e/γ separation will be done using the full event information
- Prototype of the new FE electronics running at 40 MHz is ready

Muon Detectors

- Muon detectors are already read out at 40 MHz in current L0 trigger
 - Front-end electronics will be kept
 - Remove the muon station in front of Calorimeters (M1)
- High-occupancy performance and ageing under study

<u>Approximate</u> Timeline

***** LHCb has a firm plan to upgrade by 2018

- Aim at reaching the ultimate theoretical uncertainties in key flavor observables and to search for new phenomena in the forward region: 50 fb⁻¹ needed
- Envisage to readout the entire detector at 40 MHz with a fully software-based trigger and replace some of the major detector components
- Independent of the LHC luminosity upgrade

The LHCb Upgrade is taking shape

- The LoI submitted in March 2011 was well received by LHCC
- The Framework TDR, released in May 2012, provides updated physics performance, schedule and cost estimates
- Subdetector R&D is in progress, TDRs will follow in 2013

* Great opportunity to join the LHCb Collaboration!

BACKUP SLIDES

- There is a proposal to add a Time-of-Flight (ToF) detector based on a 1 cm quartz plate, combined with DIRC technology:
 - TORCH (Time Of internally Reflected CHerencov light)
 - Measure photon flight time and direction in a standoff box
 - Measure ToF of tracks with ~15ps resolution
 - Could be installed after 2018

