

New sources of CP Violation at BaBar (CP violation in τ and 3 body B decays)

Gabriele Simi (on behalf of the BABAR collaboration)

International Conference on New Frontiers in Physics 10-16 June 2012 - Kolymbari, Crete, Greece

Introduction

- Flavor physics experiments have measured precisely CP violation and the parameters of the CKM matrix in B and D decays
 - No significant inconsistencies or deviations from SM have been observed
- \rightarrow The CKM mechanism describe very well the observed pattern of CP violation
 - However ~3 σ tensions in Vub, B $\rightarrow \tau \nu$, B $\rightarrow D^{(*)}\tau \nu$, A_{SL}, ΔA_{CP}^{D}
 - Search for CP violation in lepton decays: there is no SM mechanism so the new physics signature is clean.
 - Precisely Measure $\sin 2\beta$ in b \rightarrow sqq decays to see the indirect effect of high mass scale new physics in the b \rightarrow s loop
 - Search for CPV in $b \rightarrow s\gamma$, $b \rightarrow sll$ decays again to see the effect of new physics in the $b \rightarrow s$ loop and SM can make precise predictions

Synopsis

- $B \rightarrow K(*)$ ll:
 - Differential BF and direct CP asymmetry [arXiv:1204.3933]
- $B \rightarrow K_s K_s K_s$
 - Dalitz Plot <CP>, time dependent CPV <DP>, S~sin2β, C~0 [PRD85, 054023]
- $B \rightarrow KKK$
 - Time dependent CP violation with DP analysis, S~sin2 β and C~0 [arXiv:1201.5897]
- $\tau^+ \longrightarrow K_s \pi^+ \nu$
 - − Direct CP violation, $A_{CP} \sim 0$ (← from τ decay)[Phys.Rev. D85 (2012) 031 102]

BABAR Detector at PEPII

$B \rightarrow K^{(*)}$ ll rates and asymmetries

 Effective Wilson coeff. (C_i) encode short distance physics, calculated to NNLO in SM to ~5% accuracy

- BF and asymmetries can be studied as a function of m₁₁²
- Coefficients can be affected by NP entering at the same order as the SM observables and give a different dependence on m_{μ}^2

K^(*)l⁺l⁻: signal extraction

- Reconstruct $B^{+(0)} \rightarrow K^{+(0)} l^+ l^-$, $B^{+(0)} \rightarrow K^{*(0)} l^+ l^-$, $l=e,\mu$
- Tight particle ID on e,µ,K to reduce fakes
- Neural Net suppression of combinatoric background (qq and BB)
- Veto most peaking background $(J/\psi,\psi(2S),D(K^*\pi)\pi)I^+I^-$
- J/ψ ll used as a control sample.

BF results

• Signal extracted from ML fit to M_{ES} and $\Delta E \quad M_{ES} = \sqrt{(s/2 + p_0 p_B)^2 / E_0^2 - p_B^2}$ • Total BF $\Delta E = E_B^* - \frac{\sqrt{s}}{2}$

$$\mathcal{B}(B \to K\ell^+\ell^-) = (4.7 \pm 0.6 \pm 0.2) \times 10^{-7},$$

$$\mathcal{B}(B \to K^*\ell^+\ell^-) = (10.2^{+1.4}_{-1.3} \pm 0.5) \times 10^{-7}.$$

• BaBar Belle and CDF [and LHCb] agree with SM prediction

K^(*)ll Isospin asymmetry

ArXiv:1204.3933 BABAR preliminary

Isospin asymmetries as the difference between B⁰ and B[±]

$$\mathcal{A}_{I}^{K^{(*)}} \equiv \frac{\mathcal{B}(B^{0} \to K^{(*)0}\ell^{+}\ell^{-}) - r_{\tau}\mathcal{B}(B^{+} \to K^{(*)+}\ell^{+}\ell^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\ell^{+}\ell^{-}) + r_{\tau}\mathcal{B}(B^{+} \to K^{(*)+}\ell^{+}\ell^{-})}$$

- In SM expect very small asymmetries O(1%)
- Measure the asymmetry below J/ ψ (0.1<s<8.12 GeV²/c⁴)

 $\mathcal{A}_{I}^{\text{low}}(B \to K\ell^{+}\ell^{-}) = -0.58^{+0.29}_{-0.37} \pm 0.02 \quad [2.1\sigma],$ $\mathcal{A}_{I}^{\text{low}}(B \to K^{*}\ell^{+}\ell^{-}) = -0.25^{+0.20}_{-0.17} \pm 0.03 \quad [1.2\sigma],$

Consistent with SM predictions at 2σ and agree with Belle results

CP Asymmetry

 R_{K*} $^{+0.34}_{-0.26} \pm 0.10$ +0.48

-0.33+0.55-0.37 ± 0.08

 ± 0.11

- Direct CP asymmetries agrees with SM expectation (0)
- Lepton flavor ratio agree with unity

$s (\text{GeV}^2/c^4)$	$A_{CP}(B^+ \rightarrow K^+ \ell^+ \ell^-)$	$A_{CP}(B \rightarrow K^* \ell^+ \ell^-)$	s (GeV^2/c^4	\mathcal{R}_K	
All	$-0.03 \pm 0.14 \pm 0.01$	$0.03 \pm 0.13 \pm 0.01$	Al	l	$1.00^{+0.31}_{-0.25}\pm0.07$	1.13
0.10 - 8.12	$0.02 \pm 0.18 \pm 0.01$	$-0.13^{+0.18}_{-0.19}\pm0.01$	0.1	0-8.12	$0.74^{+0.40}_{-0.31}\pm0.06$	1.06
>10.11	$-0.06^{+0.22}_{-0.21}\pm0.01$	$0.16^{+0.18}_{-0.19}\pm0.01$	>1	0.11	$1.43^{+0.65}_{-0.44}\pm0.12$	1.18

G.Simi U. Padova - ICF2012

TD CPV in $B^0 \rightarrow K_s K_s K_s$: motivation

- Penguin loop dominated NP sensitive at large scales
- CP=+1 => time dependent CPV analysis
- b \rightarrow s loop diagram has the same weak phase as b \rightarrow cc K^(*)

- However b → u pollution and new physics contributions could depend on the resonance structure -> study Dalitz plot
 - Study the poorly understood $f_x(1500)$

Signal Modeling

- Dalitz Plot: time integrated, CP averaged:
 - 3 identical particles in the final state \Rightarrow amplitudes are symmetric for exchange of two K_s

$$d\Gamma(B \to K^0_S K^0_S K^0_S) \; = \; \frac{1}{(2\pi)^3} \frac{|\mathcal{A}|^2}{32m^3_{B^0}} \, ds_{\min} ds_{\max},$$

Distribution in $s_{min} s_{max}$ populates only _

1/6 of the phase space

Isobar approximation: —

$$\mathcal{A}(s_{\min}, s_{\max}) = \sum_{\substack{j=1\\j=1}}^{N} c_j F_j(s_{\min}, s_{\max}).$$
Centrifugal barrier for tensors
$$F_j(s_{\min}, s_{\max}, L) = R_j(m) X_L(|\vec{p}^{\star}| r') X_L(|\vec{q}| r) T_j(L, \vec{p}, \vec{q})$$

$$L \neq 1 \quad \text{lineshape} \quad \text{Zemach tensors for} \\ \text{angular distribution} \quad S_{\max}[\text{GeV}]$$

$$G.Simi U. Padova - ICF2012$$

$$s_{\min} = \min(s_{12}, s_{23}, s_{13}),$$

$$s_{\max} = \max(s_{12}, s_{23}, s_{13}).$$

$$s_{ij} = s_{ji} = m_{K^0_S(i)K^0_S(j)}^2 = (p_i + p_j)^2,$$

Signal extraction

- Discriminating variables
 - M_{ES} , ΔE , Neural Network($\cos\theta^*$, $\cos\theta_B$, L_2 , L_0), Dalitz plot
 - Signal extracted from unbinned ML fit signal and sidebands region

$$\mathcal{L}_i = \sum_j N_j \mathcal{P}_j^i(m_{\rm ES}, \Delta E, \text{NN}, h_{\min}, h_{\max}),$$

- ϵ computed as function of Dalitz plot position to improve sensitivity
 - <**E**>=6.6%
- Background
 mainly from
 continuum events
- S=200 ± 15
- S/B=65%

G.Simi U. Padova - ICF2012

Dalitz Model

• Start with a basic model $f_0(980)$ [flatte'], χ_{c0} [RBW], NR[$e^{\alpha m^2}$]

- Add $f_0(1710)$ [RBW], $f_2(2010)$ [RBW] by scanning the likelihood
- No need for $f_x(1500)$
- Two solutions found for $f_0(980)$:
 - large f0 component with small NR

15/6/12- small f0 with large NR G.Simi U. Padova - ICF2012

Time dependent CP violation

- DP result useful to predict the deviation of $sin 2\beta_{eff}$ from $sin 2\beta$
- Integrate over Dalitz plot and fit the time distribution with

$$\begin{aligned} \mathcal{P}_{\text{sig}}^{i}(\Delta t, \sigma_{\Delta t}; q_{\text{tag}}, c) &= \\ \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} \bigg\{ 1 + q_{\text{tag}} \frac{\Delta D_{c}}{2} \\ + q_{\text{tag}} \langle D \rangle_{c} \bigg[\mathcal{S} \sin(\Delta m_{d} \Delta t) - \mathcal{C} \cos(\Delta m_{d} \Delta t) \bigg] \\ &\otimes \mathcal{R}_{\text{sig}}(\Delta t, \sigma_{\Delta t}), \end{aligned}$$

- TD determines also the weak and strong phases
- Use also Ks $\rightarrow \pi^0 \pi^0$ to improve sensitivity

$B \longrightarrow KKK (excl. K_S K_S K_S)$

- Also in this case b \rightarrow s loop diagram has the same weak phase as b \rightarrow cc K^(*) transitions and b \rightarrow u tree diagrams can change this by sin2 β_{eff} -sin2 β = [-1%,4%] PLB620, 143; PRD72, 014006
- However K⁺K⁻K_s is not guaranteed to be a CP eigenstate
 - interference of resonances $\Rightarrow sin2\beta_{_{eff}}$ extracted from a Dalitz plot, time dependent analysis
- Interference allows to resolve the ambiguity on the sign of $\cos 2\beta_{eff}$ (β , 90°- β ambiguity). Can measure β_{eff} for other resonances
- A_{CP} in $B \rightarrow \phi(K^+K^-)K^+$ is well predicted in SM ~ 0%< A_{CP} <4.7%
- PRD 74, 094020
- Study the poorly understood $f_x(1500)$ with the high statistics B⁺ \rightarrow K⁺K⁻K⁺ sample and B⁺ \rightarrow K⁺K_sK_s (L=even)

Selection

- Background mostly from $b \rightarrow c$ transitions, fight with NN($\cos \theta_{T}$, $\cos \theta_{B}$, L2/L0, $\Delta t / \sigma_{\Delta t}$, tagging)
 - K⁺K⁻K⁺: sig: 5300, S/B=78%
 - $K_{s}K_{s}K^{+}$: sig 600, S/B=24%
 - $K^+K^-K_s(\pi^+\pi^-)$: sig: 1400, S/B=34%
- Dalitz plot
 - Isobar model

$B \rightarrow KKK Dalitz model$

- No need for $f_x(1500)$
- NR contribution better described by polynomial
- CPV parameters set to nominal ones
- Best fit with φ(1020), f0(980), f0(1500), f2'(1525), f0(1710), χc0, polynomial NR.
- Angular moments used to compare data and fit $\langle P_l \rangle = \int_{-1}^1 |\mathcal{A}(m_{KK}, \cos \theta)|^2 P_l(\cos \theta) d\cos \theta$

$B \rightarrow KKK Dalitz model (II)$

- $K_{S}K_{S}K^{+}$: best fit with $f_{0}(980)$, $f_{0}(1500)$, $f_{2}'(1525)$, $f_{0}(1710)$, χ_{c0} , polynomial NR. First ever DP analysis
- K⁺K⁻K_S: best fit with $\phi(1020)$, $f_0(980)$, $f_0(1500)$, $f_2'(1525)$, $f_0(1710)$, χ_{c0} , best fit with $f_0(980)$, $f_0(1500)$, $f_2'(1525)$, f0(1710), χ c0, polynomial NR.
- In all 3 channels: no need for broad $f_x(1500)$ [not yet established, used to explain some older data]
- $f_x \rightarrow f0(1500), f2'(1525), f0(1710)$

B→KKK CP violation results

• K⁺K⁻K⁺

- BF=(33.4±0.5±0.9)×10⁻⁶ [χ_{c0} K excluded]
- $A_{CP}(overall) = (-1.7 + 1.9 1.4 \pm 1.4)\%$
- $A_{CP}(\phi K) = (12.8 \pm 4.4 \pm 1.3)\%$ (2.8 σ from 0, SM:~0-4.7%)
- $K_S K_S K^+$
 - BF= $(10.1\pm0.5\pm0.3)\times10^{-6}$ [χ_{c0} K excluded]
 - $A_{CP} = (4\pm5\pm2)\%$

B→KKK CP violation results (II)

- BF=(25.4±0.9±0.8)×10⁻⁶ [χ_{c0} K excluded]
- $\beta_{\text{eff}}(\phi K_{\text{S}}) = (21\pm 6\pm 2)^{\circ}$, excellent agreement with SM
- $\beta_{\text{eff}}(\text{non-}\phi, \text{non-}f_0) = (20.3 \pm 4.3 \pm 1.2)^\circ$, agrees with SM
- 90°- $β_{eff}$ excluded at 4.8σ (ambiguity in J/ ψ K_s)
- Constraints on new physics: assume
 - Isospin symmetry $[A(\phi K^+)=A(\phi K_s)]$
 - 2nd amplitude with different phases w.r.t. penguin $r\sim 10\%$ due to A(ϕ K⁺)

 $\mathcal{A} = \mathcal{A}_1(1 + re^{i(\eta + \zeta)}),$ $\overline{\mathcal{A}} = \mathcal{A}_1(1 + re^{i(\eta - \zeta)}),$

η: 0 and 180 disfavored G.Simi U. Padova - ICF2012

CP violation in τ lepton decays

- No CKM type mechanism exists in charged leptons.
- CP asymmetry in leptons has not yet been observed
- Tau is the only lepton that can decay to hadrons, which provides an opportunity for observing non-SM type CP violation.
- Search for time integrated rate asymmetry for $\tau^- \to K_s \pi^- (\ge 0 \pi^0) v_{\tau}$ in $e^+e^- \to \tau^+\tau^-$ events

$$\mathcal{A}_{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K_s^0 v_{\tau}) - \Gamma(\tau^- \to \pi^- K_s^0 v_{\tau})}{\Gamma(\tau^+ \to \pi^+ K_s^0 v_{\tau}) + \Gamma(\tau^- \to \pi^- K_s^0 v_{\tau})}$$

Phys.Rev. D85 (2012) 031 102

Signal Selection

- Signal side.
 - $-1K_{s}^{0}$
 - 1-prong (not identified as kaon)
 - Any number of π^0
- Tag-side
 - Electron or muon

- Likelihood cuts to reduce qq background and Select good K_c⁰
 - Bkg: number of neutral clusters, thrust, visible energy, pt
 - K_s: decay vertex, mass, polar angle
- Yield: 170k events each for τ^+ and τ^-
- 15% background dominated by $\tau^- \to K^- K^0_s (\geq 0\pi^0) \nu_{\tau}$ and $\tau^- \to \pi^- K^0 \overline{K}^0 \nu_{\tau}$ G.Simi U. Padova - ICF2012 15/6/12

Rate asymmetry

- Arec=-0.32% (e tag) , -0.05% (μ tag)
- The asymmetry in reconstructed events has several contributions Arec = $(A_{CP}^*D_{bkg} + A_{\epsilon} + A_{D})$
- A_{ϵ} : Control sample $\tau \rightarrow 3$ -prong
 - No charge asymmetry expected in control sample → extract detector asymmetry consistent with zeo, included in sys (~0.10%)
- A_D: Kaon interaction asymmetry
 - $A_{\rm D} = (+0.07 \pm 0.01)\%$
- D_{bkg}: background
 - Dilution due to τ background: D_{bkg}=0.75
- Result: $A_{CP} = (-0.36 \pm 0.23 \pm 0.11)\%$ I5/6/12 G.Simi U. Padova - ICF2012

SM expectation

 No CP violation in tau decay but known CP violation effects in Kaon decays

• $\tau^+ \to K^0, \tau^- \to \overline{K^0}, |K^0\rangle = (|K_S\rangle + |K_L\rangle)/2p, |\overline{K}^0\rangle = (|K_S\rangle - |K_L\rangle)/2q$

• Bigi and Sanda [Phys.Lett. B625(2005)47] predict an asymmetry due to CPV in the K sector equal to $2\text{Re}_{K}\approx 3.3\ 10^{-3}$

$$\mathcal{A}_{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K_s^0 \nu_{\tau}) - \Gamma(\tau^- \to \pi^- K_s^0 \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ K_s^0 \nu_{\tau}) + \Gamma(\tau^- \to \pi^- K_s^0 \nu_{\tau})} = +0.33\% \qquad \begin{array}{l} \text{Phys.Lett.} \\ \text{B625(2005)47} \end{array}$$

• Not end of story: $K_s \rightarrow \pi\pi$ and $K_L \rightarrow \pi\pi$ amplitudes interference generates a time dependence of the asymmetry [Grossman and Nir JHEP 1204 (2012) 002]

Comparison with SM

- Experimental detection of K0 → ππ has an efficiency dependent on the decay length
- \Rightarrow Correction factor of 1.08
- \Rightarrow SM prediction = +0.36%
- Result : A_τ=(-0.36 ±0.23±0.11)% .
 2.8σ deviation from SM
 - Similar situation in D⁺-> $K_s \pi^+$ but

$$- D^{+} \longrightarrow \overline{K}{}^{0}, D^{-} \longrightarrow K^{0} \Longrightarrow A_{D} = -A_{D}$$

- Exp. Result $A_{\rm D} = -0.44 \pm 0.13 \pm 0.10$

Phys.Rev. D85 (2012) 031 102 K0 \rightarrow ident on 0.8 0.6 0.4 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.

Incompatible with the τ measurement!

ohy. Rev. D 33(2011)071103

Summary

- BF and CP asymmetry in $B \rightarrow K^{(*)}ll$ consistent with SM
 - Negative Isospin asymmetry at the 2**σ** level
- Observation of CP violation in $B \rightarrow K_s K_s K_s$ consistent with sin2 β
- Observation of direct CP violation in $B^+ \rightarrow \phi K^+ 2.8\sigma$ from zero
- Improved understanding of the resonance structure of $B \rightarrow 3K$: no need for broad $f_x(1500)$, first ever DP analysis of $B^+ \rightarrow K_s K_s K^+$
- Measured direct CP asymmetry in tau decays, inconsistent with the SM (after correction for KS decay) and with direct cp violation in D decays.

Backup