Present and future strategies for Neutrinoless Double Beta Decay

Marco Vignati INFN Roma ICFP, 10-16 June 2012 Kolymbari, Crete, Greece

Open questions in v physics

- What is the size of the θ_{13} mixing angle?
 - Is there CP violation?
- Are there sterile neutrinos?
- Is the total Lepton Number conserved?
 - Is the neutrino a Majorana particle?
- What is value of the neutrino mass?
- What is the hierarchy of neutrino masses?

Oscillation Results

• Almost all oscillation parameters have been measured (arXiv:1205.5254)

Oscillation Parameter			Value	Precision
solar mass splitting	Δm_{21}^2	=	$7.54^{+0.26}_{-0.22} \times 10^{-5} \mathrm{eV}^2$	3%
atmospheric mass splitting	$ \Delta m^2_{23} $	=	$2.43^{+0.07}_{-0.09} \times 10^{-3} \mathrm{eV}^2$	3%
solar mixing angle	$\sin^2 heta_{12}$	=	$0.307\substack{+0.018\\-0.016}$	6%
atmospheric mixing angle	$\sin^2 heta_{23}$	=	$0.398\substack{+0.030\\-0.026}$	7%
'CHOOZ' mixing angle	$\sin^2 heta_{13}$	=	0.025 ± 0.003	12%

• The sign of Δm_{23}^2 is still unknown, thus allowing two configurations:

Neutrino nature

- Except for the total leptonic number the neutrino is a neutral fermion.
- So if the total leptonic number is not conserved neutrinos can be Majorana particles:
 - particle and antiparticle are the same. Chirality determines the charge of the lepton produced in interactions:

 It is still not clear today whether neutrinos are Dirac or Majorana particles. The distinction make sense only because they are massive.

Neutrinoless double beta decay

- Nuclear process: $(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$
- Can only happen if lepton number is not conserved, unlike the Standard Model allowed 2v mode: (A,Z) → (A,Z+2) + 2 e⁻ + 2 v̄
- The decay probability depends on the effective Majorana mass $m_{\beta\beta}$ of the neutrino exchanged between the two electron vertexes.
- The measurable quantity is the half-life ($\tau_{1/2}^{0\nu}$) of the decay:

Phase space factor: ~ Q⁵ $\frac{1}{(\tau_{1/2}^{0\nu})} = G(Q, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2 = F_N \frac{|m_{\beta\beta}|^2}{m_e^2}$ Nuclear Matrix element

Effective Majorana mass

• Effective neutrino Majorana mass in terms of the measured oscillation parameters and the unknown lightest neutrino mass:

Summary so far

1 measure — many answers...

...extremely challenging though.

0vDBD in Experiments

- Experiments measure the sum of the kinetic energies of the two emitted electrons.
 - Signature: monochromatic line at the Q-value of the decay.
- Sensitivity $(S^{0\nu})$: lifetime corresponding to the minimum number of detectable events above background at a given C.L.:

Isotope choice

$$|m_{\beta\beta}|^2 = 1 / \left[G(Q,Z) |M^{0\nu}|^2 \tau_{1/2}^{0\nu} \right]$$

• 0vDBD candidates of experimental interest: (arXiv:1201.4916)

isotope	$G^{0\nu}$	Q_{etaeta}	nat. abund.	$T_{1/2}^{2\nu}$
	$[10^{-14}y^{-1}]$	$[\mathrm{keV}]$	[%]	$[10^{\bar{2}0}]$ y]
^{48}Ca	6.3	4273.7	0.187	0.44
$^{76}\mathrm{Ge}$	0.63	2039.1	7.8	15
$^{82}\mathrm{Se}$	2.7	2995.5	9.2	0.92
$^{100}\mathrm{Mo}$	4.4	3035.0	9.6	0.07
$^{116}\mathrm{Cd}$	4.6	2809	7.6	0.29
$^{130}\mathrm{Te}$	4.1	2528	34.2	9.1
$^{136}\mathrm{Xe}$	4.3	2461.9	8.9	21
$^{150}\mathrm{Nd}$	19.2	3367.3	5.6	0.08

- In general, Q > 2615 keV isotopes are preferred because they lie above the natural radioactivity edge.
- However the choice has been dominated so far by technology compromises.

Nuclear amplitude $|m_{\beta\beta}|^2 = 1 / \left[G(Q,Z) |M^{0\nu}|^2 \tau_{1/2}^{0\nu} \right]$

- The spread in the values does not influence the isotope choice.
- Generate problems when comparing exclusions and evidences from experiments running different isotopes.

Experimental race

$$S^{0\nu} = \ln 2N_A \cdot \frac{a}{A} \left(\frac{Mt}{B\Delta E}\right)^{1/2} \cdot \epsilon$$

Germanium diodes

The Klapdor-Kleingrothaus claim

- Past Germanium-diodes-based experiment: Heidelberg-Moscow
 - background 0.12 cpy/keV/kg
 - no evidence in 10 kg(⁷⁶Ge)×3.5y
- A small group departed from the collaboration and published their own (improved) analysis of the data.
- The group claimed for the peak observation: Phys.Lett.B 586(2004)198 2
 - $T^{0v}_{1/2} = (2.23 + 0.44) \times 10^{25} \text{ yr}$
 - $\langle m_{\beta\beta} \rangle = 0.32 \pm 0.03 \text{ eV}$

Gerda - @LNGS

- Present: Gerda phase I 3 ^{nat}Ge diodes: 7.6 kg 6 ^{enr}Ge diodes 14.6 kg
- $\Delta E = 3 \text{ keV FWHM}$
- Data taking delayed by an unexpected ⁴²Ar contamination in the LAr

 $^{42}\text{Ar}(\beta) \longrightarrow ^{42}\text{K} (\beta, \text{Q=3.52 MeV})$

Liquid Argon Water cerenkov (cooler) (muon veto)

- Diodes p-contact attracts the ⁴²K ions which then decay in the detector: bkg 6x higher than the design.
- Bkg successfully reduced by catching the ⁴²K ions with electric fields inside the LAr.

Gerda: good data from 11/11 P. Grabmayr at Neutrino 2012

counts/(keV kg yr)

month of running **15**

Germannan and a

- Trajectories 3500 228Th DEP Gerda phase II (2013) 3000 988thode interaction point 2500 holes 1621 keV Increase mass to ~25 kg interaction point 2000 1500 \sim 1500 New detectors: BEGe, 1000 Allow γ/β discrimination 500 via Multi/Single site 1580 1590 1600 1610 1620 1630 1640 identification Energy [keV]
 - Veto external gammas with readout of scintillation light of LAr
 - ▶ New bkg. lower by 1 order of mag.: 10⁻³ counts/keV/kg/y
- Majorana Demonstrator (2013)
 - Deploy 40 kg of ^{enr}Ge
 - Determine the best technology for a 1 ton Ge experiment to be pursued together with the Gerda collaboration.

Bolometers

Bolometric technique

- Particle energy converted into phonons \rightarrow temperature variation.
- Crystals embedding 0vDBD source.
- Low crystal heat capacitance and low base temperature to see small temperature variations $\longrightarrow \Delta T \sim E/C$

Energy release

- Detector response in this configuration: ~ 0.1 mK / MeV
- Resolution @0vDBD ~ few keV

CUORE - @LNGS

Rate [counts/ (1 keV)]

- $^{nat}TeO_2$ bolometers (34% ^{130}Te), 750g each (ΔE =5 keV FWHM)
- Past: Cuoricino
 - 62 bolometers
 11 kg (¹³⁰Te)×2y,
 Bkg: 0.16 cpy/keV/kg
 - $T^{0v}_{1/2} > 2.8 \times 10^{24}$ years (90% CL) $\langle m_{\beta\beta} \rangle < 300 \sim 700$ meV
- Future: Cuore (data taking in 2015)
 - Expected bkg: 0.01~0.04 cpy/keV/kg
 - Exp. $T^{0v}_{1/2} > 1.6 \times 10^{26}$ years $\langle m_{\beta\beta} \rangle < 40 \sim 94$ meV
- Present: Cuore-0, a CUORE-like tower.
 - same mass of Cuoricino, 0.05 cpy/keV/kg.

CUORE: the α nightmare

 MC: the background in CUORICINO is due to degraded α particles which release only a part of their energy in the detector (surface contaminations, mainly in copper).

- TeO₂ bolometers, per se, do not allow to discriminate β and α particles.
 - α bkg partially reduced by cleaning the detector parts.

LUCIFER - @LNGS

- Scintillating bolometers to discriminate the α background, enriched in ⁸²Se or ¹⁰⁰Mo.
 - Target: define the technology for a ZERO background (<1 count/ton/year), ~1-ton isotope experiment after CUORE.

Light detector:

Ge bolometer

Absorber bolometer: Zn⁸²Se or Zn¹⁰⁰MoO₄

Liquid scintillators

Exo-200 - @WIPP

- Double sided TPC
- 200 kg Liquid ¹³⁶Xe
- $\Delta E = 100 \text{ keV FWHM}$
- Multi/Single site discrimination
- Bkg: 0.0015 cpy/keV/kg
- Data taking started in Spring 2011

Exo-200 results (32.5 kg×yr)

- First observation of 2vββ decay of ¹³⁶Xe
 - T^{2v}_{1/2} = (2.23 ± 0.017 stat ± 0.22 sys)·10²¹ yr (6x faster than previous limit)
- $T^{0v}_{1/2} > 1.6 \cdot 10^{25} \text{ yr} \longrightarrow \langle m\beta\beta \rangle < 140-380 \text{ meV} (90\% \text{ C.L.}) \text{ arXiv:} 1205.5608$

Exo vs KK claim

- Now: Improving energy resolution and pattern recognition
- Future: 1T with tagging of ¹³⁶Ba⁺⁺ ion (¹³⁶Xe daughter).

Kamland-Zen

- Total: ~320 kg 90% enriched ¹³⁶Xe (2.4 wt%)
- Fiducial (~R/2): 125±7 kg ¹³⁶Xe
- U : 3.5x10⁻¹⁸ g/g Th: 5.2x10⁻¹⁷ g/g
- Res@2615 keV:
 250 keV FWHM
- Taking data since
 September 24, 2011

Kamland-Zen: results (112 days)

Background peak very close to the 0vDBD: ^{110m}Ag or ²⁰⁸Bi,⁸⁸Y from Spallation or from Fukushima.

0vDBD hypothesis rejected at 8σ

- $T_{1/2}^{0v} > 6.2 \times 10^{24} \text{ yr} (90\% \text{ CL}) \longrightarrow \langle m_{\beta\beta} \rangle < 260 \sim 540 \text{ meV}$
- T^{2v}_{1/2}=2.30±0.02(stat)±0.12(syst) ×10²¹ yr (arXiv:1205.6372)

Kamland-Zen future

- Soon (target sensitivity: ~80 meV):
 - improved purification of Xe-LS to remove peaking contaminants ^{110m}Ag, ²⁰⁸Bi,⁸⁸Y -> Target: more than a factor 100 reduction.
- Near future (target sensitivity ~40 meV):
 - increased Xe amount and cleaner baloon
- Future (target sensitivity ~20 meV):
 - improve resolution with new LS and more efficient light collection.

Other projects

- Amore: Ca¹⁰⁰MoO₄ bolometers (development)
- Next: 100kg, high pressure, ¹³⁶Xe-gas TPC (development)
- Sno+: 44kg ¹⁵⁰Nd in liquid scintillator (development)
- SuperNemo: 100 kg of various isotopes, tracking (development)
- ... and others.

Conclusion: present limits

Conclusion: next reaches

