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1 - Characterization of Bose condensates

As entry point let me present three thermal systems with supe rfluid-fluid phase transition on the one

hand and a superconducting one ( type I or II ) on the other, but all three related to ( here thermal ) Bose

condensates. The three systems possess minimally two inten sive thermal variables , e.g. temperature T

and density or molar density ̺ n = N / V , the latter equivalent to a chemical potential for conserve d

baryonic- and electronic- charge respectively .

1) He-4 single atom He-4 II superfluid - He-4 I normal fluid tran sition

The Bose condensing field is a single He-4 boson with an extens ive fraction of atoms all sharing

the same wave function , illustrated in Fig. 1 .

T c ≡ T cr = O ( 1 ◦ K )(1)

2) He-3 fermion-pair-condensed superfluid - normal fluid tra nsition

The Bose condensing field is made up of a pair of fermionic He-3 atoms , illustrated in Fig. 2.

T c ≡ T cr = O
`

10 −3 ◦ K
´

(2)

3) electron-pair-condensed superconducting - normal cond ucting material ( e.g. Niobium )

The Bose condensing field is made up of a pair of fermionic elec trons , illustrated in Fig. 3.

T c ≡ T cr = O ( 2 − 100 ◦ K )(3)

→
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Fig. 1 : He-4 II superfluid - He-4 I fluid phase boundary from ref . [2-1993]
→
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Fig. 2 : He-3 A,B superfluid - He-3 fluid phase boundaries from r ef. [3-2011]
→
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Fig. 3 : Specific heat in the superconducting phase ←→ ’no latent heat ,

indicates that the transition is continuous or second order ’, from ref. [4-2001] ,

( Bardeen, Cooper and Schrieffer )
↓

( with respect to energy or energy density ) →
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A short list of historical references is included in the refe rence section on the page marked rH-1 .

A few remrks on the 3 systems chosen to exemplify Bose condens ates are in order here .

1) Lev Davidovich Landau did work on the quantum nature of firs t the He-4 Bose-liquid 1936-38 , as a

member of the Institute directed by Pyotr Leonidovich Kapit sa , as well as later 1956-58, on

Fermi-liquids including superfluid He-3 .

In the theoretical part of this endeavour the rooting in elem entary field theory was not fully

achieved , but the prediction of second sound with velocity d istinct from primary sound waves

was subsequently proven correct experimentally .

2) The discovery of superconductivity by Kammerling Onnes r ecently celebrated its centenary. Yet the

’Microscopic Theory of Superconductivity’ by B-C-S in 1957 raised – rightly so – much general

attention. It infers fermion-pairing of two electrons and c ondensation of these (Cooper-) pairs also

leaving the field theoretic roots incomplete. An important r ole towards the goal of field quanta and

Bose-condensation was derived by Nikolai Nikolaevich Bogo liubov [H3-1947] .

3) In the ensuing discussion in QCD we shall conceive this the ory completely switching off

electromagnetism and all associated electrically charged and neutral leptons . While this is a clear

simplification , associations with most commonly known ther mal phases is at the same time

accordingly restricted as well as dangereous.
→
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1-1 - Bose condensates and trace anomaly in QCD

L =

2
6664

q ċ′

Ṡ′ ḟ

8
<
:

i
2

↽⇀

∂ µ δ c′ċ

+ W r
µ

`
1
2
λ r

´
c′ ċ

9
=
; γ µ

Ṡ′S
q c
S f

−m f q ċ

Ṡ ḟ
q c
S f

3
7775

− 1
4 g 2

B µν r B r
µν + ∆ L

W r
µ ≡ − v r

µ : for identification of convention for potentials

quarks : c′ , c = 1, 2, 3 color , f = 1, · · · , 6 flavor

S′,S = 1, · · · , 4 spin , m f mass

(4)

gauge bosons : L B = − 1
4 g 2

B µν r B r
µν

B r
µν = ∂ µ W r

ν − ∂ ν W r
µ + f rst W s

µ W t
ν ←−

`
W r

µ ≡ − v r
µ

´

r, s, t = 1, · · · , dim ( G = SU3 c ) = 8

Lie algebra labels ,
ˆ
1
2

λ r , 1
2

λ s
˜

= i f rst
1
2

λ t

perturbative rescaling :

W r
µ = g W r

µ pert , B r
µν = g B r

µν pert

(5)

→
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Completing ∆ L in Fermi gauges

∆ L =

8
<
:
− 1

2 η g 2
( ∂ µ W µ r ) 2

+ ∂ µ c r ( D µ c ) r

9
=
; ; η : gauge parameter

ghost fermion fields : c , c ; ( D µ c ) r = ∂ µ c r + f rst W s
µ c t

gauge fixing constraint : C r = ∂ µ W µ r

Lagrangean density elements in a nutshell| {z }

(6)

n
ϑ µ

µ =
P

f m f S
ḟ f

+ δ 0

o
( x )

n
∂ µ

`
j 5

µ

´ S
= 2 〈m 〉 i P S + δ 5

o
( x )

δ 0 = −
`
−2 β ( g ) / g 3

´ ˆ
1
4

(:) B t
µ ν B µ ν t (:)

˜
→ ren.gr.inv

δ 5 =
`

2 N fl

´
1

8π 2

h
1
4

(:) B t
µ ν

eB µ ν t (:)
i
→ren.gr.inv

− β /g 3 = 1
16π 2

b 0 + O ( X ) ; X = g 2 / ( 16 π 2

the two central anomalies in a nutshell| {z }

(7)

→

– p. 10



1-8

n
ϑ µ

µ =
P

f m f S
ḟ f

+ δ 0

o
( x )

n
∂ µ

`
j 5

µ

´ S
= 2 〈m 〉 i P S + δ 5

o
( x )

δ 0 = −
`
−2 β ( g ) / g 3

´ ˆ
1
4

(:) B t
µ ν B µ ν t (:)

˜
→ ren.gr.inv

δ 5 =
`

2 N fl

´
1

8π 2

h
1
4

(:) B t
µ ν

eB µ ν t (:)
i
→ren.gr.inv

(8)

What is what in the expressions for the central anomalies in e q. 8 above

1) ϑ µν ( x ) = ϑ νµ ( x ) with ∂ µ ϑ µν = 0 denotes the conserved, symmetric and

local SU3 c gauge invariant energy momentum density tensor .

2)
`

j 5
µ

´ S
( x ) stands for the flavor singlet axial current

P
f (:) q ċ

f
γ µ γ 5 q c

f
(:) ( x ) .

3) The flavor diagonal scalar and pseudoscalar densities are denoted

S
ḟ f

( x ) = (:) q ċ

ḟ
q c

f
(:) ( x ) , P

ḟ f
( x ) = (:) q ċ

ḟ
γ 5 q c

f
(:) ( x ) ( no sum on f ) .

4) S
ḟ f

are hermitian , P
ḟ f

antihermitian local densities , with
`

j 5
µ

´ S
, P S ) implying a

projection on the flavor singlet contributions . m f denotes the nonnegativ quark mass
pertaining to flavor f .

5) The symbols (:) (:) denote normal ordering , which in the re striction to perturbative approximations

can be thought of as normal ordering with respect to noninter acting massless ( or massive ) quark

fields and noninteracting massless gauge bosons. →
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In contradistinction to quark fields, whose infrared diverg ences are cured by any finite quark mass

terms, even if only used as regulators, the gauge boson fields always retain in the perturbative

approximation their infrared divergences .

Consequential condensate categories
→

1) In QCD without QED and leptons there are no Bose condensate s relative to base fields , both

fermionic violating CPT as well as bosonic . The exclusion is a consequence of strong boundary

conditions maintaining unbroken local gauge invariance ba rring the color octet gauge bosons

from forming a condensate .

2) Bose condensates thus involve composite fields , minimall y quark-antiquark color neutral pairs , but

possibly also higher color neutral even multiples of quarks and antiquarks for composite fermion

fields , as well as again minimally pairs of gauge bosons , but p ossibly also color neutral arbitrary

even and odd multiples thereof .

E.g. pair field substrates with quantum numbers J P C = 0 ++ are shown in eq. 9 below

fermion pairs gauge boson pairs

(:) q ċ

ḟ
q c

f
(:) ( x ) 1

4
(:) B t

µ ν B µ ν t (:) ( x )

(9)

→
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2 - The dominantly second order phase transition for vanishi ng chemical potentials
in collaboration with S. Kabana , ref. [1-2010]

In this section and second part the hypothesis is investigat ed , that the thermal structure of QCD phases

at and near zero chemical potentials is determined by long ra nge coherence, inducing the gauge boson

pair condensate, and its thermal extension, representing a fundamental order parameter. A consistent

framework for thermal behaviour including interactions is derived in which the condensate does not

produce any latent heat as it vanishes at the critical temper ature inducing a second order phase

transition with respect to energy density , neglecting even tual numerically small critical exponents. We

mention the extreme situation of a solvable model in 2 dimens ions, exhibiting an infinite order phase

transition [5-1973] .

The aim was to tackle the questions left open in our previous w ork [6-2001] and to illustrate the effects

representing the ( dominantly ) second order transition wit h respect to energy density – in principle not in

numerical detail – as they affect the other thermodynamic va riables like pressure and velocity of sound.

Localization and delocalization of color fields are thus sep arated by a unique critical temperature. The

existence and nature of the QCD phase transition is theoreti cally amenable to a universal description

underlying a thermal system with all its general and specific restrictions, but is tantamount to a full

completion of the infrared instability of the theory .

Lattice QCD calculations lead to a very clear picture, estab lishing the lack of any phase transition at zero

chemical potentials [7-2010, 8-2009] . →
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2-a - Energy momentum density tensor and vacuum condensates : gauge boson - and q q − pairs

We recall the local, symmetric gauge invariant and conserve d nature of the energy momentum density

tensor ϑ µ ν , as displayed in eqs. 7 and 8 as well as the form of the trace ano maly ( eq. 9 . The above

properties imply exact Poincar é invariance.

{ ϑ µ ν = ϑ ν µ } ( x ) ; ∂ ν ϑ µ ν = 0

ϑ µ
µ =

P
f m f S

ḟf
( x ) + δ 0 ( x )

δ 0 ( x ) = − b 0

8 π 2

ˆ
1
4

(:) B t
µν B µν t (:) ( x )

˜
ren.gr.inv.

b 0 = 11 − 2
3

N fl

(10)

In eq. 10 1
4

(:) B t
µν B t µν (:) ( x ) denotes the normal ordered local gauge boson ( field strength - )

bilinear , and S
ḟf

( x ) = (:) q ċ

ḟ
q c

f
(:) ( x ) the scalar q − q bilinear pertaining to flavor f,

introduced in eq. 9 in section 1 .

We thus consider vacuum expected values of the local operato rs in eq. 10, which by translation

invariance are independent of position x , suppressed in the following →
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ηµν 〈Ω | ϑ µν ( x ) |Ω〉 = − b 0

8 π 2
〈 Ω | 1

4
(:) B t

µν B t µν (:) ( x ) |Ω 〉

+ m f 〈Ω | S
ḟf

( x ) |Ω 〉
(11)

〈Ω | (:) 1
4

B t
µν B t µν (:) |Ω 〉 = B 2 shall be called the gauge boson pair vacuum condensate ,

abbreviated by B 2 .

〈Ω | S
ḟ f
|Ω 〉 6= 0 induces spontaneous chiral symmetry breaking and is genera lly called q − q

vacuum condensate.

In connection with normal ordering ambiguities it is import ant to admit in the precise form of the energy

momentum tensor a nontrivial vacuum expected value , which a s a consequence of exact Poincar é

invariance must be of the form

〈Ω | ϑ µν ( x ) |Ω 〉 = − η µν p vac
n

η µν = diag ( 1 , −1 , −1 , −1 ) ; p vac = − ρ vac

o

independent of x →

∆ ϑ µν ( x ) = ϑ µν ( x ) − 〈 Ω | ϑ µν ( x ) |Ω 〉 |Ω 〉 〈 Ω |

with ∂ ν ∆ ϑ µ ν ( x ) = 0 ; 〈Ω | ∆ ϑ µν ( x ) |Ω 〉 = 0

(12)

In eq. 12 P Ω = |Ω 〉 〈Ω | denotes the projector on the ground state . →
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From the two local, conserved tensors in eq. 12 only ∆ ϑµν(x) with vanishing vacuum expected value

is acceptable as representing the conserved 4 momentum operators and their densities yielding the

integral form

bPµ =

Z
t d3 x ∆ϑµ0 (t, ~x)(13)

We use here throughout strictly thermal , ’extension in phas e space’ associated potentials, depending in

subtle ways on vacuum condensates. To these potentials no va cuum associated spontaneous

parameters like pvac = −ρvac, defined in eq. 12, contribute in a direct way, dominating in t he limit

T → 0 ; µ α ≡ 0 .

From eqs. 11 and 12 we obtain the relation and estimates. Erro rs may be underestimated.

pvac =

9

32 π 2

B 2 + 1
4

eΛ =

8
<
:

0.00302 GeV 4

0.00658 GeV 4

B 2 =

8
<
:

0.125 GeV 4 [9-1979]

0.250 GeV 4 [10-1998]

eΛ = −
P

f mf 〈Ω | S
ḟf
|Ω 〉

∼ f 2
π ( 1

2
m 2

π + m 2
K ) = 0.00217 GeV 4

(14)

→
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2-b - Construction of a thermal model including interaction s

The central defining quantities, characterizing existence and order of the phase transition, are – for zero

chemical potentials – pressure, energy density and entropy density .

We follow the strategy layed out in ref. [6-2001] taking into account the modifications described above,

distinguishing two eventual phases

1) the hadronic (hg)-phase , with color localized within sta ble hadrons and selected hadron

resonances. Thermal potentials of the (hg)-phase are appro ximated by those of free hadrons,

neglecting decay widths, as described in ref. [6-2001].

2) the quark-antiquark-gauge boson (qg)-phase, wherein th ermal potentials are related but not equal to

those of free quarks and antiquarks, restricted to the flavor s u,d,s and c, and 8 gauge bosons

pertaining to the gauge group SU3c. Next we describe the modeling of interactions in the

(qg)-phase, which deviates from noninteracting constitue nts assumed in ref. [6-2001] .

We introduce for the (qg)-phase , the Gibbs density g
(0)
qg and energy density ̺

(0)
e qg , where the

superscript (0) refers to →
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to free tricolored quark- , antiquark- flavors u , d , s , c and ei ghtfold colored gauge bosons

g
(0)
qg ( T ) =

P
α qg

w α qg

`
1 / ( 2π2 )

´ Z
∞

m α qg

l E p d E

w α qg
=

`
2 spin α qg

+ 1
´

8
<
:

3 for q, q

8 for g
=

8
<
:

6 for q, q

16 for g

β ≡ 1 / T ; l = ∓ log [ 1 ∓ exp (−β E) ]

̺
(0)
e qg ( T ) = − ( d / d β ) g

(0)
qg ( T ) = T 2 ( d / d T ) g

(0)
qg ( T )

(15)

In eq. 15 the index α qg runs over the different constituents of the (qg) phase, whil e w αqg
denotes

the multiplicity beyond momentum phase space associated wi th the constituent αqg . The sign ( ∓ ) in

the expression for l is - for bosons and + for fermions .

We choose the following masses for quark flavors u, d, s, c

[ mu = 0.00525, md = 0.00875, ms = 0.175, mc = 1.27 ] GeV(16)

The masses of the u,d,s light flavors as well as their ratios m u : m d : m s = 3 : 5 : 100 ,

within generous ranges of ± 20 % , should not play any decisive role here .

The gauge boson pair vacuum condensate is thought to be the ca use of the stable embedding of a wide

range of (light) quark masses , without wrecking approximat e flavor symmetries. →
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The inclusion of the charmed quark serves the purpose to chec k whether it has any significant influence

on the thermal parameters in the region of T c ∼ 0.2 GeV , wich turns out to be in the few percent

range .

We proceed to modify the free quark antiquark gauge boson (qg -) parametrization of the Gibbs potential

and the energy density, which for µ α = 0 must obey the exact relation

g qg = g qg ( T ≡ β −1 ) ; − ( d / dβ ) g qg ( T ) = ̺ e qg ( T )

and g qg ↔ g hg , ̺ e qg ↔ ̺ e hg ; hg : hadron gas

(17)

The Gibbs- and energy-densities in the hadron phase are cons tructed from the expressions analogous to

the ones given in eq. 15 , where the index α qg → α hg runs over a suitable choice of hadrons and

hadron resonances as defined in ref. [6-2001] with real masse s and again neglecting interactions among

these states . The ensuing parametrization of interactions is understood as representing the phase

structure in principle and not in numerical detail. The mode ling of interactions in the qg-phase is

performed setting two parameters k , ∆ g , independent of temperature, as approximately

parametrizing the interaction in the assumed phase called q g – in a limited region of T ≥ T cr ≡ T c

̺ e qg ( T ; k ) = k ̺
(0)
e qg ( T )

g qg ( T ; k , ∆ g) = k g
(0)
qg ( T ) − ∆ g

(18)

The parameter 0 < k < 1 is taking into account the reduction of Gibbs density or pres sure →
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relative to the noninteracting (Stefan-Boltzmann) limit , noted in perturbative QCD calculations of thermal

parameters for T ≃ T c of interest here [11-2007] , while the second parameter ∆ g is an integration

constant from the differential equation ( eq. 17 ) , which is s atisfied for any values of ( k , ∆ g ) .

We proceed in two steps to map out the structure of the phase tr ansition, using T c ≡ T cr

I : the condition determining T c ↔ k

The equality of the energy densities – in the hadron phase ̺ e had for T ≤ T c as outlined in

ref. [6-2001] and in the qg-phase as defined in eq. 18 ̺ e qg for T ≥ T c determine the critical

temperature

̺ e had ( T ) = ̺ e qg ( T ; k ) ↔ T = T c ( k )(19)

The matching ( eq. 19 ) is further restricted to yield the valu e

T c ∼ 0.2 GeV ↔ k ∼ 0.452 ; for Ntype = 65(20)

in accordance with the estimate of one of us [12-1988] .

II : the condition avoiding singular behaviour of pressure g radient

This condition implies

g hg ( T c ) = g qg ( T c ; k , ∆ g) ↔ ∆ g = ∆ g ( Tc ( k ) )(21)

and determines ∆ g

∆ g ∼ 0.00753 GeV 3 ≃ 0.94 fm −3 for Ntype = 65(22)
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2-c - Results and discussion

We present figures 4 - 10 in sequence, each followed by an exten ded caption.

Figure 4 shows how the transition temperature is determined and its stable variation , for the two sets

of resonances, Ntype 65 and Ntype 26 forming the HRG ↔ hg . The two sets are described in

chapter 2 , tables 1 - 8 and in Appendix 1 , tables 9 - 11 and figure s 8 - 10 .

Figure 5 shows in detail the energy- and Gibbs densities for t he selected choice Ntype 65 , as well as

on the parameters k , ∆ g as defined in eqs. 17 - 18 in subsection 2-b .

Figure 6 shows the second order nature of the transition – unm odified and modified on the

quark-gluon-side by subleading critical exponents – of the quantity ̺ e ( T ) / T 4 , piecewise

described by ̺ e hg(−65) / T 4 for T ≤ T c from the HRG side and

ρ e qg no mod (mod) / T 4 for T ≥ T c from the quark-gluon side, as defined in subsection

2-b .

Figure 7 shows the third order nature of the transition under the same conditions as underlying figure 3

for the quantity p / T 4 , piecewise described by p e hg(−65) / T 4 for T ≤ T c from the

HRG side and p qg no mod (mod) / T 4 for T ≥ T c from the quark-gluon side .

Figure 8 shows the second order nature of the transition unde r the same conditions as figures 3 and 4

for the quantity dscale = ( ̺ e − 3 p ) / T 4 , displaying the form of an ’indian tent’ . The

transition is piecewise described by dscale hg for T ≤ T c from the HRG side and

dscale qg no mod (mod) for T ≥ T c from the quark-gluon side .

The modification by subleading critical exponents is given i n eq. 23 below .
→
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Figure 9 shows the quantities forming the ’indian tent’ iden tical to figure 5 . The quantity dscale

obtained in ref. [7-2010] from lattice simulation of QCD und er the same thermal conditions is also

plotted for comparison .

Figure 10 shows the first order nature of the transition of the square of the velocity of sound , under the

same conditions as for figures 6 - 9 , piecewise described by th e quantities v 2
hg

for T ≤ T c

from the HRG side and v 2
qg no mod

for T ≥ T c from the quark-gluon side . Only the

unmodified setting is used for v 2
gq .

In figures 6 - 9 the modifications of ̺e qg mod / T 4 and p qg mod / T 4 introduce a subleading critical

exponent ν in the vicinity of T = T c allowing the free quark-gluon limits to be reached for T →∞ .

The modified quantities are defined as8
<
:

̺ ν
e qg

p ν
qg

9
=
; =

8
<
:

fmod ( ν , T / T c ) ̺e qg + fmod1 ( ν , T / T c ) p qg

fmod ( ν , T / T c ) p qg

9
=
;

fmod ( ν , T / Tc ) = 1 + | 1− Tc / T | 2ν ( 1 / k − 1 )

fmod1 ( ν , T / T c) = T ( d / d T ) fmod ( ν , T / T c )

(23)

The relations in eq. 23 ensure that the differential equatio n in eqs. 24 and 17 is satisfied .

̺ e ( T ) = − ∂ β g ( T ) , g ( T ) = β p ( T ) ; s ( T ) = ∂ T p ( T ) ; β = T −1(24)
→
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2-fig4

Fig. 4 : Dependence of energy- and Gibbs densities (̺e , g)hg pertaining to a free hadron gas,
for two, offset, choices of spectra : Ntype = 65 ⊃ 26, and associated (̺e , g)qg no mod .←→

– p. 23



2-fig4-c

To Fig. 4 : In units of GeV 4 and GeV 3 for energy- and gibbs densities the same ordinates are used.

The upper offset ordinate corresponds to Ntype = 65 and is mar ked by ticmarks in red , while the

lower ordinate corresponds to Ntype 26 , with ticmarks in bla ck .

The two conditions for a second , third order transition with respect to ̺ e , g
8
<
:

̺ e

g

9
=
;

hg

( T ) =

8
<
:

̺ e

g

9
=
;

qg

( T ) for T = T c(25)

are marked by two ◦ symbols separately for Ntype = 65 , 26 . The two sets of paramet ers

T c , k (≡ rk ) , ∆ g given in eqs. 21 , 22 become

T c k ∆ g Ntype

0.190 GeV 0.452 0.00753 GeV 3 65

0.196 GeV 0.365 0.0062 GeV 3 26

(26)

The quantities with suffix qg refer to unmodified ones ( no mod ) .

→
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2-fig5-c

To Fig. 5 : The upper offset case in Fig. 4 for Ntype = 65 is displ ayed separately . Both captions direct

and extended to Fig. 4 also refer to Fig. 5 . Ntype = 65 is subjec t of more detailed study in the

following .
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2-fig6

Fig. 6 : ←→
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2-fig6-c

To Fig. 6 : The enumeration in subsection 2-c with respect to F igure 6 is repeated below .

It shows the second order nature of the transition – unmodifie d and modified on the

quark-gluon-side by subleading critical exponents – of the quantity ̺ e ( T ) / T 4 , piecewise

described by ̺ e hg(−65) / T 4 for T ≤ T c from the HRG side and

ρ e qg no mod (mod) / T 4 for T ≥ T c from the quark-gluon side, as defined in section 2 and

subsection 2-b .

The three curves are represented with dashed lines outside t heir range of validity. The quantity

ρ ν
e qg mod

is defined in eq. 23 , here with ν = 0.975 , the same value as used in the

subsequent figures 7 - 9 .
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2-fig7

Fig. 7 : ←→
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2-fig7-c

To Fig. 7 : The enumeration in subsection 2-c with respect to F igure 7 is repeated below .

It shows the ( dominantly ) third order nature of the transiti on under the same conditions as

underlying figure 6 for the quantity p / T 4 , piecewise described by p e hg(−65) / T 4 for

T ≤ T c from the HRG side and p qg no mod (mod) / T 4 for T ≥ T c from the

quark-gluon side .

The three curves are represented with dashed lines outside t heir range of validity. The quantity

p ν
qg mod

is defined in eq. 23 , here with ν = 0.975 , as used in the subsequent figures 8 - 9 .
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2-fig8

Fig. 8 : ←→
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2-fig8-c

To Fig. 8 : The ’indian tent’ .

The enumeration in subsection 2-c with respect to Figure 8 is repeated below .

It shows the ( dominantly ) second order nature of the transit ion under the same conditions as

figures 6 and 7 for the quantity dscale = ( ̺ e − 3 p ) / T 4 , displaying the form of an

’indian tent’ . The transition is piecewise described by dsc ale hg for T ≤ T c from the HRG

side and dscale qg no mod (mod) for T ≥ T c from the quark-gluon side .

The three curves are represented with dashed lines outside t heir range of validity. The quantity

dscale ν
qg mod

is obtained from eq. 23 , here with ν = 0.975 , as used in the subsequent

figure 9 .

→

– p. 32



2-fig9

Fig. 9 : ←→
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2-fig9-c

To Fig. 9 : The ’indian tent’ as compared with the lattice QCD c alculation of dscale , also called the

trace anomaly , by S. Borsanyi et al. [7-2010] .

The enumeration in subsection 2-c with respect to Figure 9 is repeated below .

It shows the quantities ( dscale ) forming the ’indian tent’ i dentical to figure 5 . The same quantity

as obtained in ref. [7-2010] from lattice simulation of QCD u nder the same thermal conditions is

also plotted for comparison .

The three curves forming the ’indian tent’ are represented w ith dashed lines outside their range of

validity. The quantity dscale ν
qg mod

is obtained from eq. 23 , here with ν = 0.975 , the same

as in figures 6 - 8 .
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2-fig10

Fig. 10 : ←→
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2-fig10-c

To Fig. 10 : The square of the velocity of sound .

The enumeration in subsection 2-c with respect to Figure 10 i s repeated below .

It shows the first order nature of the transition of the square of the velocity of sound , under the

same conditions as for figures 6 - 9 , piecewise described by th e quantities v 2
hg

for T ≤ T c

from the HRG side and v 2
qg no mod

for T ≥ T c from the quark-gluon side . Only the

unmodified setting is used for v 2
gq .

The two curves for v 2
hg

, v 2
gq are represented with dashed lines outside their range of val idity.
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3 - Outlook

The theoretical considerations concerning the phase struc ture of QCD for vanishing chemical potentials

lead us to the illustration in principle of thermodynamic en ergy density and pressure in the vicinity of the

critical temperature T c ∼ 200 Mev, reflecting the resolution of the infrared instability o f QCD through

Bose condensation of gauge invariantly paired gauge bosons , a basic form of such condensation

represented by the bosonic version of Bogoliubov transform ations [H3-1947] .

A comparison with the strong coupling regime observed in cen tral Au Au collisions at 200 GeV at RHIC

[13-2005, 14-2005] and the continuation of measurements of p p as well as Pb Pb collisions by the ALICE

collaboration at LHC combined with heavy ion collisions at l ower center of mass energy offers the

possibility to deduce thermodynamic base variables of QCD, albeit indirectly , complementing a

longstanding effort , experimental and theoretical , in thi s direction. The theoretical description in lattice

simulations of QCD offers a direct access to all thermal equi librium states.

The hypotheses adopted in the paper on which this report is ba sed predict in the neighbourhood of

vanishing chemical potentials a phase transition, of (esse ntially) second order with respect to energy

density, as illustrated in figures 4 - 10 .

The goal remains to actually prove or disprove the hypothese s and their consequences discussed here,

wide open to , ideally , experimental and theoretical invest igation and interpretation.

— Thank you —
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