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INTRODUCTION

QUARKS STRICTLY CONFINED IN NATURE

> f <1077 EXPECT 1012

» <1071 EXPECT O(1)

oToT —

NATURAL EXPLANATION : A SYMMETRY.
DECONFINEMENT A CHANGE OF SYMMETRY.
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PURE GAUGE SU(N) (NO QUARKS)

LAGRANGEAN BLIND TO THE CENTRE Zy (SYMMETRY).
ORDER PARAMETER : POLYAKOQV LINE = (P),

P = Trl(rexplig [2°* T Ao(%, t)dt)] [HOLONOMY]
» IF Z|0) = |0), (P) = (PZ) = Z;(P) — (P) =0,
(P) = exp(—%2) . (P) =0 — CONFINEMENT.
» IF Zy SYMMETRY IS BROKEN (DECONFINEMENT)
(P)#0
IS Zy THE SYMMETRY FOR CONFINEMENT IN NATURE?
NO, BECAUSE
» IN PRESENCE OF QUARKS Zy IS NOT A SYMMETRY.

» (P) IS A GOOD ORDER PARAMETER ALSO IN
PRESENCE OF QUARKS AND FOR GROUPS LIKE G
WITH TRIVIAL CENTER. (see Fig.’s)
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(P) in full QCD.
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(P) for G, GAUGE THORY.

G, gauge group, 4x20° lattice
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THE SYMMETRY

(P) ACTS AS ORDER PARAMETER OF ANOTHER
SYMMETRY, WHICH COINCIDES WITH Zy BY CHANCE IN
THE QUENCHED SU(N) CASE.

» (P) ( POLYAKOQV LINE) ORDER PARAMETER FOR DUAL
SUPERCONDUCTIVITY OF THE VACUUM.

» (M) tHOOFT LINE ( DUAL HOLONOMY ) IS THE
DISORDER PARAMETER

» CHIRAL SYMMETRY BREAKING LOCKED TO
MONOPOLE CONDENSATION.

($9) oc ().
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'tHOOFT POLYAKOV MONOPOLES

L= =3 G G + (DuB)* = (82 — £5)?
p2>0— HIGGS PHASE : 2= &= L

» HEDGEHOG GAUGE = LANDAU GAUGE [8,A,, = 0]
G = GPPH(E), €=rgd  H(E)eono — 1
§5§—>oo ~ %i—f , ¢52(B3) =0. p= g% , M =~ %T(T)
A NON TRIVIAL HOMOTOPY S, — SU(2).

» UNITARY GAUGE = MAXIMAL ABELIAN GAUGE
[DIAE = 9, ALFilAO, AF] = 0
($5)e oo = ®o3  (BF) = 03555 . Ps,(Bs) = 2.

» CHARGE CONJUGATION; ® — & A, — —A, G, — —Gpu,
D,® — D,®. ASYMPTOTIC HIGGS FIELD THE SAME
FOR MONOPOLE AND ANTIMONOPOLE.
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QCD MONOPOLES;

MONOPOLES WITH m = £1 STABILIZED BY HIGGS FIELD.
IN LATTICE QCD STABLE MONOPOLES DETECTED IN MAX
ABELIAN GAUGE, SMALL FLUCTUATIONS (MONOPOLE
DOMINANCE) . WHAT ACTS AS HIGGS FIELD?

EQ.S OF MOTION
D,G,, = i[¢,D,®] ,
D, Gmpn = DoGmo + i[q), qu)]
IN THE STATIC CASE (9o = 0), DoGmo = i[Ao, DmAo]
DnGmn = i[®, [Dm, ] + i[Ao, [Dm, Ao]]
Ao ACTS AS EFFECTIVE ¢ .
Ao TIME INDEPENDENT BY A G.T.DEPENDING ON xq
P = exp(iALTg)
NON TRIVIAL HOLONOMY « STABLE MONOPOLES.
CONFINEMENT BOSE CONDENSATION.
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QCD MONOPOLES,

THE MAX ABELIAN GAUGE IS FIXED BY MAXIMIZING F
§F = 6%, Tr[Upu(n)o3Uf(n)o3] =0 (1)

IF MONOPOLES ARE LOW DENSITY AND DOMINATE

Ui(n) ~ 1 AND EQ (1) BECOMES

5%, Tr[Uo(n)o3Ud(n)as] = 0 OR Up(n) = exp(ighoaos)

THE POLYAKOV LINE IS DIAGONAL : MAX ABELIAN AND
POLYAKOV GAUGE APPROXIMATELY COINCIDE IN THE
CONFINED PHASE.

(P) IS GAUGE INVARIANT AND = 0 AT LARGE VOLUMES IN

CONFINED PHASE. — Tr[o3P] = sin(¥4) IN MAX ABELIAN
GAUGE.

gAY RELATED TO SIZE AND MASS OF MONOPOLES.
EXTENDED CHECKS ON LATTICE UNDER WAY.
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INSTANTONS AND MONOPOLES

FINITE T INSTANTONS (CALORONS) KNOWN AS EXACT
SOLUTIONS ON LATTICE [Lee, vanBaal]

IF HOLONOMY IS NON TRIVIAL EACH OF THEM CONTAINS
A M — M PAIR OF BPS TYPE.

VICEVERSA, IF A MONOPOLE IS PRESENT ( A NON TRIVIAL
HOLONOMY) THERE IS A FINITE PROBABILITY TO HAVE
AN INSTANTON [Rubakov effect]

WORKING HYPOTHESIS :

NUMBER OF INSTANTONS o« NUMBER OF MONOPOLES
HOLONOMY (P) ALSO CONTROLS CHIRAL SYMMETRY.

A GAS OF INSTANTONS, EACH WITH A BPS PAIR M — 1.
MONOPOLES WEAKLY INTERACTING.

(UNDER CHECK IN COLLABORATION WITH F.PUCCI AND M.
HASEGAWA.)

DENSITY OF INSTANTONS ACROSS T. (FIG)
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'tHOOFT LINE

A DUAL HOLONOMY (M) DEFINED BY 'tHOOFT LOOPS B(C)
A(C)B(C') = B(C")A(C)exp(i*<).

(M) DUAL PAR. TRANSP. ACROSS LATTICE, SAY ALONG z.
(M{p)=0

ADDING A 'tHOOFT LINE IS LIKE CREATING A M — M PAIR
AT THE ENDS.

CONDENSATION — DEBYE SCREENING =CLUSTER
PROPERTY

(M) = (a'bl) af, ¥ CREATION OPERATORS OF M , M
COMPARE TO DIRECT DEFINITION.
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287(2001)
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GENERIC GAUGE GROUP

A MONOPOLE SPECIES FOR EACH SIMPLE ROOT i,

i =1,2,..r, (r THE RANK). MAXIMIZE

F = %%, Tr[U (A UfL(n)AS]

A THE 3 (DIAGONAL) COMPONENT OF SU(2) OF THE
ROOT i. OBTAIN MAX-ABELIAN FOR THE SINGLE i SU(2)'S
AETFIIAR, AE] =0

MONOPOLE DOMINANCE : Up(n) ~ 1, Up(n) DIAGONAL.
GAUGE Ay = const. HOLONOMY P THE PRODUCT OF THE r
SU(2) HOLONOMIES P; . sin(¥2%) = — L Tr[\,P}].

SU(N): ALL 'S EQUIVALENT (WEYL SYMMETRY). CAN
DIFFER FOR G,

'tHOOFT LINE FOR EACH DIFFERENT i.
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CONCLUSIONS

» IF MONOPOLES CONDENSE (1) DISORDER
PARAMETER.
(P) BY DUALITY THE ORDER PARAMETER

» STABLE MONOPOLES IN GAUGE THEORIES CAN EXIST
IF HOLONOMY IS NON TRIVIAL. THEY DO NOT EXIST
IN DECONFINED PHASE.

» PHYSICAL MEANING OF (P) : MONOPOLE DOMINANCE
— P =exp(i —03) Aoos THE ASYMPTOTIC HIGGS FIELD
OF MONOPOLES AND ANTIMONOPOLES. |Apg| = =

271']%| ~ Mmon-
> Nipst < Npon MONOPOLES BPS WEAKLY INTERACTING

» CHIRAL SYMMETRY BREAKING IS LOCKED TO
CONFINEMENT.

WORK IN PROGRESS.



	

