MONOPOLES, HOLONOMY AND CHIRAL SYMMETRY BREAKING IN QCD

A. Di Giacomo

Pisa University and INFN, Italy.

ICFP 2012, Creta 11 June 2012

INTRODUCTION

QUARKS STRICTLY CONFINED IN NATURE

$$ightharpoonup rac{n_q}{n_p} \le 10^{-27}$$
 EXPECT 10^{-12}

$$ightharpoonup rac{\sigma_q}{\sigma_{TOT}} \leq 10^{-15}$$
 EXPECT $O(1)$

NATURAL EXPLANATION : A SYMMETRY.
DECONFINEMENT A CHANGE OF SYMMETRY.

PURE GAUGE SU(N) (NO QUARKS)

LAGRANGEAN BLIND TO THE CENTRE Z_N (SYMMETRY). ORDER PARAMETER : POLYAKOV LINE = $\langle P \rangle$,

$$P = Tr[(\tau \exp(ig \int_{x_0}^{x_0 + \frac{1}{T}} A_0(\vec{x}, t) dt)] \text{ [HOLONOMY]}$$

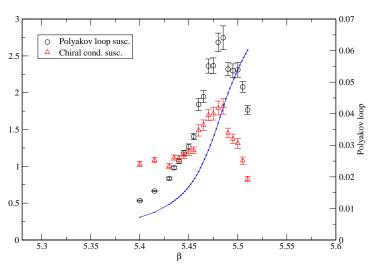
- ▶ IF $Z|0\rangle = |0\rangle$, $\langle P \rangle = \langle PZ \rangle = Z_i \langle P \rangle \rightarrow \langle P \rangle = 0$. $\langle P \rangle = \exp(-\frac{F_q}{T})$. $\langle P \rangle = 0 \rightarrow \mathsf{CONFINEMENT}$.
- ▶ IF Z_N SYMMETRY IS BROKEN (DECONFINEMENT) $\langle P \rangle \neq 0$

IS Z_N THE SYMMETRY FOR CONFINEMENT IN NATURE? NO, BECAUSE

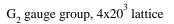
- ▶ IN PRESENCE OF QUARKS Z_N IS NOT A SYMMETRY.
- ▶ $\langle P \rangle$ IS A GOOD ORDER PARAMETER ALSO IN PRESENCE OF QUARKS AND FOR GROUPS LIKE G_2 WITH TRIVIAL CENTER. (see Fig.'s)

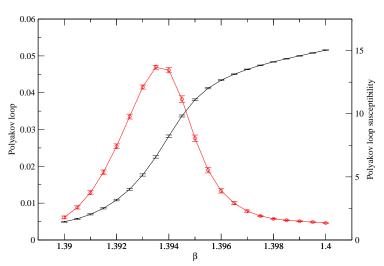
$\langle P \rangle$ in full QCD.

 N_f =2, am=0.041083, lattice 6x22³



$\langle P \rangle$ for G_2 GAUGE THORY.





THE SYMMETRY

 $\langle P \rangle$ ACTS AS ORDER PARAMETER OF ANOTHER SYMMETRY, WHICH COINCIDES WITH Z_N BY CHANCE IN THE QUENCHED SU(N) CASE.

 $ightharpoonup \langle P \rangle$ (POLYAKOV LINE) ORDER PARAMETER FOR DUAL SUPERCONDUCTIVITY OF THE VACUUM.

 \blacktriangleright $\langle\Pi\rangle$ 'thooft line (<code>DUAL HOLONOMY</code>) IS THE DISORDER PARAMETER

▶ CHIRAL SYMMETRY BREAKING LOCKED TO MONOPOLE CONDENSATION. $\langle \bar{\psi}\psi\rangle \propto \langle \Pi \rangle.$

'tHOOFT POLYAKOV MONOPOLES

$$\begin{split} L &= -\tfrac{1}{4} \vec{G}_{\mu\nu} \, \vec{G}_{\mu\nu} + (D_\mu \vec{\Phi})^2 - \tfrac{\lambda}{4} (\vec{\Phi}^2 - \tfrac{\mu^2}{\lambda})^2 \\ \mu^2 &> 0 \to \quad \text{HIGGS PHASE} : \vec{\Phi}^2 = \tfrac{\mu^2}{\lambda}. \qquad \bar{\Phi} \equiv \tfrac{\mu}{\sqrt{\lambda}} \end{split}$$

- ▶ HEDGEHOG GAUGE \equiv LANDAU GAUGE $[\partial_{\mu}A_{\mu}=0]$ $\vec{\Phi}\vec{\sigma}=\vec{\sigma}\hat{r}\vec{\Phi}H(\xi)$, $\xi=rg\vec{\Phi}$ $H(\xi)_{\xi\to\infty}\to 1$ $\vec{B}\vec{\sigma}_{\xi\to\infty}\approx\frac{\hat{r}}{2g}\frac{\hat{r}\vec{\sigma}}{r^2}$, $\Phi_{S_2}(B_3)=0$. $\rho\approx\frac{1}{g\vec{\Phi}}$, $M\approx\frac{2\pi}{g}\vec{\Phi}$. A NON TRIVIAL HOMOTOPY $S_2\to SU(2)$.
- ► CHARGE CONJUGATION; $\Phi \to \Phi$ $A_{\mu} \to -A_{\mu}$ $G_{\mu\nu} \to -G_{\mu\nu}$, $D_{\mu}\Phi \to D_{\mu}\Phi$. ASYMPTOTIC HIGGS FIELD THE SAME FOR MONOPOLE AND ANTIMONOPOLE.

QCD MONOPOLES₁

EQ.S OF MOTION

MONOPOLES WITH $m=\pm 1$ STABILIZED BY HIGGS FIELD. IN LATTICE QCD STABLE MONOPOLES DETECTED IN MAX ABELIAN GAUGE, SMALL FLUCTUATIONS (MONOPOLE DOMINANCE) . WHAT ACTS AS HIGGS FIELD?

$$\begin{split} D_{\nu}G_{\mu\nu} &= i[\Phi,D_{\mu}\Phi] \ , \\ D_{n}G_{mn} &= D_{0}G_{m0} + i[\Phi,D_{m}\Phi] \end{split}$$

IN THE STATIC CASE ($\partial_0 = 0$), $D_0 G_{m0} = i[A_0, D_m A_0]$

$$D_n G_{mn} = i[\Phi, [D_m, \Phi] + i[A_0, [D_m, A_0]]$$

 A_0 ACTS AS EFFECTIVE Φ .

 A_0 TIME INDEPENDENT BY A G.T.DEPENDING ON x_0

$$P = \exp(i\frac{A_0g}{T})$$

NON TRIVIAL HOLONOMY ↔ STABLE MONOPOLES. CONFINEMENT BOSE CONDENSATION.

QCD MONOPOLES₂

THE MAX ABELIAN GAUGE IS FIXED BY MAXIMIZING F $\delta F \equiv \delta \Sigma_{n\mu} Tr[U_{\mu}(n)\sigma_3 U_{\mu}^{\dagger}(n)\sigma_3] = 0$ (1) IF MONOPOLES ARE LOW DENSITY AND DOMINATE $U_i(n) \approx 1$ AND EQ (1) BECOMES $\delta \Sigma_n Tr[U_0(n)\sigma_3 U_0^{\dagger}(n)\sigma_3] = 0$ OR $U_0(n) = \exp(igA_0 a\sigma_3)$ THE POLYAKOV LINE IS DIAGONAL : MAX ABELIAN AND POLYAKOV GAUGE APPROXIMATELY COINCIDE IN THE CONFINED PHASE.

 $\langle P \rangle$ IS GAUGE INVARIANT AND = 0 AT LARGE VOLUMES IN CONFINED PHASE. $-\frac{i}{2} Tr[\sigma_3 P] = \sin(\frac{g A_0^{(3)}}{T})$ IN MAX ABELIAN GAUGE.

 $gA_0^{(3)}$ RELATED TO SIZE AND MASS OF MONOPOLES. EXTENDED CHECKS ON LATTICE UNDER WAY.

INSTANTONS AND MONOPOLES

FINITE T INSTANTONS (CALORONS) KNOWN AS EXACT SOLUTIONS ON LATTICE [Lee, vanBaal] IF HOLONOMY IS NON TRIVIAL EACH OF THEM CONTAINS A $M-\bar{M}$ PAIR OF BPS TYPE.

VICEVERSA, IF A MONOPOLE IS PRESENT (A NON TRIVIAL HOLONOMY) THERE IS A FINITE PROBABILITY TO HAVE AN INSTANTON [Rubakov effect]

WORKING HYPOTHESIS:

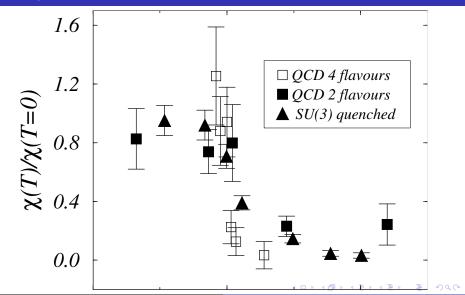
NUMBER OF INSTANTONS \propto NUMBER OF MONOPOLES HOLONOMY $\langle P \rangle$ ALSO CONTROLS CHIRAL SYMMETRY.

A GAS OF INSTANTONS, EACH WITH A BPS PAIR $M-\bar{M}$. MONOPOLES WEAKLY INTERACTING.

(UNDER CHECK IN COLLABORATION WITH F.PUCCI AND M. HASEGAWA.)

DENSITY OF INSTANTONS ACROSS T_c (FIG)

B.Alles, M.DElia, A. Di Giacomo, Phys. Lett. B483, 139 (2000)



'tHOOFT LINE

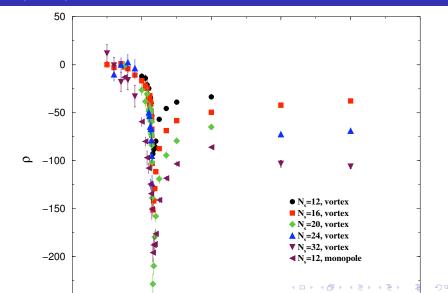
A DUAL HOLONOMY $\langle \Pi \rangle$ DEFINED BY 'tHOOFT LOOPS B(C) $A(C)B(C') = B(C')A(C)exp(i\frac{2\pi n_{CC'}}{N})$.

 $\langle \Pi \rangle$ DUAL PAR. TRANSP. ACROSS LATTICE, SAY ALONG z. $\langle \Pi \rangle \langle P \rangle = 0$

ADDING A 'tHOOFT LINE IS LIKE CREATING A $M-\bar{M}$ PAIR AT THE ENDS.

 $\langle\Pi\rangle=\langle a^\dagger b^\dagger\rangle~a^\dagger,b^\dagger$ CREATION OPERATORS OF M , \bar{M} COMPARE TO DIRECT DEFINITION.

L.Del Debbio, A. Di Giacomo, B.LuciniNucl.Phys. B594 287(2001)



GENERIC GAUGE GROUP

```
A MONOPOLE SPECIES FOR EACH SIMPLE ROOT i.
i = 1, 2, ...r, (r THE RANK). MAXIMIZE
F \equiv \sum_{i} \sum_{\mu n} Tr[U_{\mu}(n) \lambda_{3}^{i} U_{\mu}^{\dagger}(n) \lambda_{3}^{i}]
\lambda_3^i THE 3 (DIAGONAL) COMPONENT OF SU(2) OF THE
ROOT i. OBTAIN MAX-ABELIAN FOR THE SINGLE i SU(2)'S
\partial_{\mu}A_{\mu}^{i\pm}\mp i[A_{\mu}^{i3},A_{\mu}^{i\pm}]=0
MONOPOLE DOMINANCE : U_m(n) \approx 1, U_0(n) DIAGONAL.
GAUGE A_0 = const. HOLONOMY P THE PRODUCT OF THE r
SU(2) HOLONOMIES P_i . \sin(\frac{gA_i^j}{T}) = -\frac{i}{2}Tr[\lambda_3^i P_i].
SU(N): ALL i'S EQUIVALENT (WEYL SYMMETRY). CAN
DIFFER FOR Go
'tHOOFT LINE FOR EACH DIFFERENT i.
```

CONCLUSIONS

- IF MONOPOLES CONDENSE (Π) DISORDER PARAMETER.
 (P) BY DUALITY THE ORDER PARAMETER
- STABLE MONOPOLES IN GAUGE THEORIES CAN EXIST IF HOLONOMY IS NON TRIVIAL. THEY DO NOT EXIST IN DECONFINED PHASE.
- ▶ PHYSICAL MEANING OF $\langle P \rangle$: MONOPOLE DOMINANCE $\rightarrow P = \exp(i \frac{gA_0}{T} \sigma_3) \ A_0 \sigma_3$ THE ASYMPTOTIC HIGGS FIELD OF MONOPOLES AND ANTIMONOPOLES. $|A_0g| = \frac{1}{\rho}$, $2\pi |\frac{A_0}{g}| \approx M_{mon}$.
- $ightharpoonup N_{inst} \propto N_{mon}$ MONOPOLES BPS WEAKLY INTERACTING
- CHIRAL SYMMETRY BREAKING IS LOCKED TO CONFINEMENT.

WORK IN PROGRESS.

