Higgs and Dark Matter Production from SUSY Decays Federico von der Pahlen

IFCA (CSIC, Santander), Multidark Fellow in collaboration with S. Heinemeyer and C. Schappacher

ICFP 2012, Crete, June 2012

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 1/29

Higgs and Dark Matter Production from SUSY Decays

- Introduction
- Renormalization of the cMSSM
- Two-body decays @ 1-loop (widths and BRs)
 - Chargino decays
 - Neutralino decays
 - Stop decays
- Summary and Outlook

Introduction

Cold Dark Matter

- Ordinary matter < 5% of the Universe! $\Omega_{\rm CDM}h^2 \simeq 0.11, \qquad \Omega_{\rm B}h^2 \simeq 0.0224$
- WIMP miracle:
 DM @ e-w scale & weakly interacting ⇒ good relic density
- $\mathsf{CDM} \Rightarrow \mathsf{BSM} \text{ physics}$

Our candidate: the LSP

Introduction

Cold Dark Matter

- Ordinary matter < 5% of the Universe! $\Omega_{\rm CDM}h^2 \simeq 0.11, \qquad \Omega_{\rm B}h^2 \simeq 0.0224$
- WIMP miracle:
 DM @ e-w scale & weakly interacting ⇒ good relic density
- $\mathsf{CDM} \Rightarrow \mathsf{BSM} \text{ physics}$

Our candidate: the LSP

- LHC may produce DM particles:
- \rightarrow neutral particles produced in cascades!
- LC necessaray to determine DM properties!
- Theoetical calculations must be under control

Introduction

Low Energy Supersymmetry (here MSSM)

- hierarchy/naturalness problem: SM sensitive to $M_{\rm Plank}$ quadratic divergences to the self energy of scalars cancel out and stabilise the Higgs mass against radiative corrections
- Provides a natural candidate for CDM: here the neutralino $\tilde{\chi}_1^0$ (other groups, other candidates)
- Unification of gauge couplings: GUT scale M_{GUT} below the Plank mass M_{Plank}

CP-violation

 Baryon asymmetry: CP-violation in the SM not large enough MSSM with complex couplings (cMSSM)
 ⇒ new sources of CP-violation

Complex parameters in the MSSM

Enter at tree-level or via loop corrections:

- $-\mu$: Higgsino mass parameter
- $\begin{array}{l} A_{t,b,\tau}: \text{ trilinear couplings} \\ \Rightarrow X_{t,b,\tau} = A_{t,b} \mu^* \{ \cot \beta \ , \tan \beta \} \ \text{ complex} \end{array}$
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-m_{\tilde{g}}$: gluino mass

Complex parameters in the MSSM

Enter at tree-level or via loop corrections:

- $-\mu$: Higgsino mass parameter
- $\begin{array}{l} A_{t,b,\tau}: \text{ trilinear couplings} \\ \Rightarrow X_{t,b,\tau} = A_{t,b} \mu^* \{ \cot \beta \ , \tan \beta \} \ \text{ complex} \end{array}$
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $m_{\tilde{g}}$: gluino mass
- \Rightarrow can induce CP-violating effects

$$(A, H, h) \rightarrow (h_3, h_2, h_1)$$

with $M_{h_3} > M_{h_2} > M_{h_1}$

 \Rightarrow computed by FeynHiggs

- p. 5/29

cMSSM & one-loop

Aim:

consistent one-loop calculation of all two-body decay widths and BRs in the cMSSM

 \Rightarrow need consistent renormalization of the full cMSSM

Previous analyses: restricted to single decay channels. rMSSM: $\Gamma(\tilde{q} \to q\tilde{\chi}_{j}^{0})$, @1 loop QCD, [Djouadi, Hollik, Junger '96] rMSSM: $\Gamma(\tilde{q} \to q\tilde{\chi}_{j}^{0})$, @1 loop, [Guasch, Hollik, Sola '01, '02] rMSSM: $\Gamma(\tilde{\chi}_{i}^{0} \to \tilde{\chi}_{j}^{0}\ell^{+}\ell^{-})$, $\Gamma_{\text{Tot}}(\tilde{\chi}_{i}^{0})$, @1 loop, no QCD [Drees, Hollik, Xu '06] rMSSM: $\Gamma(\tilde{\chi}_{i}^{\pm/0} \to W^{\pm}\tilde{\chi}_{j}^{0/\mp})$, @1 loop [Liebler, Porod '10] cMSSM: $\Gamma(\tilde{\chi}_{i}^{0} \to \tilde{\chi}_{j}^{0}h_{k})$, full 1 loop [Weiglein, Fowler '09]

Chargino and neutralino sectors

Chargino and neutralino mass matrices:

$$\begin{aligned} \mathcal{L}_{\tilde{\chi}\mathrm{mass}} &= \left(\tilde{W}^{\pm} \ \tilde{H}^{\pm}\right) \cdot \begin{pmatrix} M_{2} & \sqrt{2}\sin\beta M_{W} \\ \sqrt{2}\cos\beta M_{W} & \mu \end{pmatrix} \cdot \begin{pmatrix} \tilde{W}^{\pm} \\ \tilde{H}^{\pm} \end{pmatrix} \\ &+ \left(\tilde{B}^{0}\tilde{W}^{0}\tilde{H}_{1}^{0}\tilde{H}_{2}^{0}\right) \cdot \begin{pmatrix} M_{1} & 0 & -M_{Z}s_{W}\cos\beta & M_{Z}s_{W}\sin\beta \\ 0 & M_{2} & M_{Z}c_{W}\cos\beta & -M_{Z}c_{W}\sin\beta \\ -M_{Z}s_{W}\cos\beta & M_{Z}c_{W}\cos\beta & 0 & -\mu \\ M_{Z}s_{W}\sin\beta & -M_{Z}c_{W}\sin\beta & -\mu & 0 \end{pmatrix} \cdot \begin{pmatrix} \tilde{B}^{0} \\ \tilde{W}^{0} \\ \tilde{H}_{1}^{0} \\ \tilde{H}_{2}^{0} \end{pmatrix} \end{aligned}$$

 $\mathsf{Diagonalization} \Rightarrow \mathsf{Higgsinos} \text{ and gauginos mix:}$

 $\tilde{W}^{\pm}, \tilde{H}^{\pm} \to \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$: chargino mass eigenstates $\tilde{B}^0, \tilde{W}^0, \tilde{H}_1^0, \tilde{H}_2^0 \to \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$: neutralino mass eigenstates

Common parameters \Rightarrow relations between masses and couplings

Federico von der Pahlen, ICFP2012, 11.06.2012

Chargino and neutralino sectors: renormalization

On-shell renormalization:

- renormalize 3 (complex) parameters: M_1, M_2, μ
- chargino-neutralino sector \Rightarrow 6 mass paramters: $m_{\tilde{\chi}_i^{\pm}}, i = 1, 2, m_{\tilde{\chi}_i^0}, j = 1, \dots, 4$

we choose $m_{\tilde{\chi}_1^\pm}, m_{\tilde{\chi}_2^\pm}, m_{\tilde{\chi}_1^0}$ as input parameters

$$\begin{split} & \left[\widetilde{\mathsf{Re}}\hat{\Sigma}_{\tilde{\chi}_{i}^{\pm}}(p)\right]_{ii}\tilde{\chi}_{i}^{\pm}(p)\Big|_{p^{2}=m_{\tilde{\chi}_{i}^{\pm}}^{2}} = 0, \qquad (i = 1, 2), \\ & \left[\widetilde{\mathsf{Re}}\hat{\Sigma}_{\tilde{\chi}_{1}^{0}}(p)\right]_{ii}\tilde{\chi}_{j}^{0}(p)\Big|_{p^{2}=m_{\tilde{\chi}_{1}^{0}}^{2}} = 0, \end{split}$$

3 eqs. define 3 complex parameters & field renormalization const. Choose masses of charged particles as input to avoid IR divergencies

Federico von der Pahlen, ICFP2012, 11.06.2012

Simultaneous renormalization of the full cMSSM

- Higgs wave function renormalization and $\tan\beta$: $\overline{\mathrm{DR}}$
- Higgs masses: on-shell. Z_H -matrix: $h, H, A \rightarrow h_1, h_2, h_3$ [FeynHiggs]
- electroweak gauge bosons: on-shell
- quark sector: internal $m_b \overline{\text{DR}}$, external m_b on-shell, other quarks on-shell
- squark sector: $A_b \overline{\text{DR}}$, squarks on-shell
- lepton/slepton sector: on-shell
- chargino-neutralino sector: on-shell (next slide)

Simultaneous renormalization of the full cMSSM

- Higgs wave function renormalization and $\tan\beta$: $\overline{\mathrm{DR}}$
- Higgs masses: on-shell. Z_H -matrix: $h, H, A \rightarrow h_1, h_2, h_3$ [FeynHiggs]
- electroweak gauge bosons: on-shell
- quark sector: internal $m_b \overline{\text{DR}}$, external m_b on-shell, other quarks on-shell
- squark sector: $A_b \overline{\text{DR}}$, squarks on-shell
- lepton/slepton sector: on-shell
- chargino-neutralino sector: on-shell (next slide)

Simultaneous renormalization of the full cMSSM under control!

Chargino decays

$$\begin{split} &\Gamma(\tilde{\chi}_i^{\pm} \to \tilde{\chi}_j^0 H^{\pm}), \quad i = 1, 2, \ j = 1, ..., 4 \\ &\Gamma(\tilde{\chi}_i^{\pm} \to \tilde{\chi}_j^0 W^{\pm}), \quad i = 1, 2, \ j = 1, ..., 4 \\ &\Gamma(\tilde{\chi}_2^{\pm} \to \tilde{\chi}_1^{\pm} h_k), \quad k = 1, ..., 3 \\ &\Gamma(\tilde{\chi}_2^{\pm} \to \tilde{\chi}_1^{\pm} Z), \\ &\Gamma(\tilde{\chi}_i^{\pm} \to \nu_\ell \, \tilde{\ell}_k^{\pm}), \quad \ell = \tau, \mu, e, \ k = 1, 2 \\ &\Gamma(\tilde{\chi}_i^{\pm} \to \ell^{\pm} \, \tilde{\nu}_\ell) \quad \ell = \tau, \mu, e \end{split}$$

No hadronic decays yet:

$$\Gamma(\tilde{\chi}_i^\pm \to q ~ \tilde{q}_k'), \quad k=1,2$$
 [SH,FP,CS 11]

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 10/29

Feynman diagrams for $\tilde{\chi}_2^- \rightarrow \tilde{\chi}_1^- h_k$

+ including all hard QED diagrams

(not shown: self energies of initial and final particles)

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 11/29

Calculation of widths and branching ratios

Framework:

- create all diagrams with FeynArts \longrightarrow model file with all counterterms in the cMSSM
- include all soft & hard QED diagrams
- further evaluation with FormCalc and LoopTools
- Dimensional REDuction
- all UV and IR divergencies cancel
- results to be included in FeynHiggs (www.feynhiggs.de)

Numerical results

Parameters for numerical evaluation

- $m_{\tilde{\chi}_1^\pm} = 350$ GeV, $m_{\tilde{\chi}_2^\pm} = 600$ GeV, $\varphi_\mu = 0$ and $\mu > 0$
- μ and M_2 as a function of the chargino masses:

$$S_{>} := \{\mu > M_{2}\} \quad \tilde{\chi}_{2}^{\pm} \sim \text{Higgsino} - \text{like}$$
$$S_{<} := \{\mu < M_{2}\} \quad \tilde{\chi}_{2}^{\pm} \sim \text{wino} - \text{like}$$

- $|M_1|$ fixed by GUT relation: $|M_1|/M_2 = 5/3 \tan^2 \theta_W \simeq 0.5$
- $\tan\beta = 20$, $\varphi_{M_1} = 0$

Choice of scenario: so that most chargino decay channels are open

Chargino decays: $m_{\tilde{\chi}_2^{\pm}}$ -dependence

 \Rightarrow one-loop corrections under control and non-negligible

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 14/29

Chargino decays: $m_{\tilde{\chi}_2^{\pm}}$ -dependence

⇒ one-loop corrections under control and non-negligible
 ⇒ size of BR highly scenario dependent

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 15/29

Feynman diagrams for $\tilde{\chi}_i^- \rightarrow \tilde{\chi}_j^0 W^-$

+ including all hard QED diagrams

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 16/29

Chargino decays: $m_{\tilde{\chi}_2^{\pm}}$ -dependence

⇒ one-loop corrections under control and non-negligible
 ⇒ size of BR highly scenario dependent

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 17/29

Chargino decays: φ_{M_1} -dependence

⇒ one-loop corrections under control and non-negligible
 ⇒ size of BR highly scenario dependent

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 18/29

Chargino decays: φ_{M_1} -dependence: CP Asymmetry

$$\mathcal{A_{CP}} = \frac{\Gamma(\tilde{\chi}_2^- \to \tilde{\chi}_1^0 W^-) - \Gamma(\tilde{\chi}_2^+ \to \tilde{\chi}_1^0 W^+)}{\Gamma(\tilde{\chi}_2^- \to \tilde{\chi}_1^0 W^-) + \Gamma(\tilde{\chi}_2^+ \to \tilde{\chi}_1^0 W^+)}$$

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 19/29

Neutralino decays (preliminary)

$$\begin{split} &\Gamma(\tilde{\chi}_{i}^{0} \to \tilde{\chi}_{j}^{0}h_{k}), \quad i, j = 1, ..., 4, \ k = 1, ..., 3, \\ &\Gamma(\tilde{\chi}_{i}^{0} \to \tilde{\chi}_{j}^{0}Z), \quad i, j = 1, ..., 4, \\ &\Gamma(\tilde{\chi}_{i}^{0} \to \tilde{\chi}_{j}^{\pm}H^{\mp}), \quad i = 1, 2, \ j = 1, ..., 4, \\ &\Gamma(\tilde{\chi}_{i}^{0} \to \tilde{\chi}_{j}^{\pm}W^{\mp}), \\ &\Gamma(\tilde{\chi}_{i}^{0} \to \ell^{\mp} \tilde{\ell}_{k}^{\pm}), \quad i = 1, ..., 4, \ \ell = \tau, \mu, e, \ k = 1, 2 \\ &\Gamma(\tilde{\chi}_{i}^{0} \to \nu_{\ell} \tilde{\nu}_{\ell}), \quad i = 1, ..., 4, \ \ell = \tau, \mu, e \end{split}$$

No hadronic decays yet:

$$\Gamma(\tilde{\chi}_i^{\pm} \to q \, \tilde{q}_k), \quad k = 1, 2$$

Neutralino decays (preliminary)

$$\begin{split} &\Gamma(\tilde{\chi}^{0}_{i} \to \tilde{\chi}^{0}_{j}h_{k}), \quad i, j = 1, ..., 4, \ k = 1, ..., 3, \\ &\Gamma(\tilde{\chi}^{0}_{i} \to \tilde{\chi}^{0}_{j}Z), \quad i, j = 1, ..., 4, \\ &\Gamma(\tilde{\chi}^{0}_{i} \to \tilde{\chi}^{\pm}_{j}H^{\mp}), \quad i = 1, 2, \ j = 1, ..., 4, \\ &\Gamma(\tilde{\chi}^{0}_{i} \to \tilde{\chi}^{\pm}_{j}W^{\mp}), \\ &\Gamma(\tilde{\chi}^{0}_{i} \to \ell^{\mp} \tilde{\ell}^{\pm}_{k}), \quad i = 1, ..., 4, \ \ell = \tau, \mu, e, \ k = 1, 2 \\ &\Gamma(\tilde{\chi}^{0}_{i} \to \nu_{\ell} \tilde{\nu}_{\ell}), \quad i = 1, ..., 4, \ \ell = \tau, \mu, e \end{split}$$

No hadronic decays yet:

$$\Gamma(\tilde{\chi}_i^{\pm} \to q \, \tilde{q}_k), \quad k = 1, 2$$

• Comparison w/ different RS w/ DESY group

Federico von der Pahlen, ICFP2012, 11.06.2012

Neutralino decays: $m_{\tilde{\chi}^0_A}$ -dependence (preliminary)

⇒ one-loop corrections under control and non-negligible
 ⇒ size of BR highly scenario dependent

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 21/29

Neutralino decays: φ_{M_1} -dependence (preliminary)

⇒ one-loop corrections under control and non-negligible
 ⇒ size of BR highly scenario dependent

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 22/29

Stop decays

$$\Gamma(\tilde{t}_2 \to t \tilde{\chi}_j^0), \ j = 1, ..., 4$$

[Fritzsche, Heinemeyer, Rhehak, Schappacher '11]

+ including all hard QCD and QED diagrams

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 23/29

Stop decays: $m_{\tilde{t}}$ -dependence

[Fritzsche, Heinemeyer, Rhehak, Schappacher '11]

 \Rightarrow one-loop corrections under control and non-negligible

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 24/29

Conclusions

- Aim: consistent one-loop calculation of all two-body decay widths and BRs in the cMSSM Necessary for the precise parameter extraction at LHC/ILC measurements Results to be implemented into FeynHiggs
- Chargino decays:
 - $\,\sim\,10\%$ loop corrections for EW decays
 - hadronic decays: work in progress
 - \mathcal{CP} asymmetries
- Neutralino decays:
 - Similar to chargino results
 - Comparison with different on-shell RS w/ DESY group
- Stop decays

Federico von der Pahlen, ICFP2012, 11.06.2012

backup transparencies

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 26/29

Chargino and neutralino sectors: renormalization

On-shell renormalization (cont.): mass shifts $m_{\tilde{\chi}_{j}^{0}} = m_{\tilde{\chi}_{j}^{0}}^{(0)} + \Delta m_{\tilde{\chi}_{j}^{0}}, \qquad (j = 2, 3, 4)$ $\Delta m_{\tilde{\chi}_{j}^{0}} = -\operatorname{Re}[m_{\tilde{\chi}_{j}^{0}}\hat{\Sigma}_{z_{0}}^{L}(m_{\tilde{\chi}_{0}}^{2}) + \hat{\Sigma}_{z_{0}}^{SL}(m_{\tilde{\chi}_{j}}^{2})]$

$$\Delta m_{\tilde{\chi}_j^0} = -\mathsf{Re} \big[m_{\tilde{\chi}_j^0} \hat{\Sigma}_{\tilde{\chi}_j^0}^L(m_{\tilde{\chi}_j^0}^2) + \hat{\Sigma}_{\tilde{\chi}_j^0}^{SL}(m_{\tilde{\chi}_j^0}^2) \big],$$

where

Federico von der Pahlen, ICFP2012, 11.06.2012

Chargino and neutralino sectors: renormalization

On-shell renormalization: field renormalization constants

$$\begin{split} \lim_{p^2 \to m^2_{\tilde{\chi}^{\pm}_i}} \frac{(\not p + m_{\tilde{\chi}^{\pm}_i}) \big[\widetilde{\mathsf{Re}} \hat{\Sigma}_{\tilde{\chi}^{\pm}_i}(p) \big]_{ii}}{p^2 - m^2_{\tilde{\chi}^{\pm}_i}} \tilde{\chi}^{\pm}_i(p) = 0, \qquad (i = 1, 2) \\ \lim_{p^2 \to m^2_{\tilde{\chi}^{0}_j}} \frac{(\not p + m_{\tilde{\chi}^{0}_j}) \big[\widetilde{\mathsf{Re}} \hat{\Sigma}_{\tilde{\chi}^{0}_j}(p) \big]_{jj}}{p^2 - m^2_{\tilde{\chi}^{0}_j}} \tilde{\chi}^{0}_j(p) = 0, \qquad (j = 1, 2, 3, 4) \end{split}$$

Off-diagonal field renormalization constants:

$$\begin{split} & \left[\widetilde{\mathsf{Re}}\hat{\Sigma}_{\tilde{\chi}_{i}^{\pm}}(p)\right]_{ij}\tilde{\chi}_{i}^{\pm}(p)\Big|_{p^{2}=m_{\tilde{\chi}_{j}^{\pm}}^{2}} = 0, \qquad (i, j = 1, 2), \ i \neq j \\ & \left[\widetilde{\mathsf{Re}}\hat{\Sigma}_{\tilde{\chi}_{j}^{0}}(p)\right]_{ij}\tilde{\chi}_{j}^{0}(p)\Big|_{p^{2}=m_{\tilde{\chi}_{1}^{0}}^{2}} = 0, \qquad (i, j = 1, 2, 3, 4), \ i \neq j \end{split}$$

Federico von der Pahlen, ICFP2012, 11.06.2012

- p. 28/29