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To measure is to acquire some piece of information about something and could be
therefore also considered a kind of information exchange. An unjustified generalization
of the classical theory of communication has produced two misunderstandings (or two
unwarranted generalizations):

There is already information selection at the start of the information exchange.
This is true for controlled information exchange in certain conditions but it is not
true for quantum–mechanical systems (which can be in an initial superposition
state) but it is neither true for living systems, which in general try to extrapolate
(or to guess) the vital meaning of an uncertain signal (Who is the sender? To
which purpose?) once they receive a certain piece of information. The case of
mimicry is sufficiently clear: an innocent signal may obscure a real danger.

Given the previous assumption, the model that has been imposed is the match
or mismatch between input and output. However, this does not correspond to the
real situation of most information exchanges. This is the reason why in AI and
PDP the so–called hidden units (bridging between inputs and outputs) were
introduced. In the following I shall introduce an interface of this kind between
input and output, classically represented by data and quantum–mechanically by
the coupling between object system and apparatus. Seen in this perspective,
classical and quantum measurement are less far away than it is customary to
assume.
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Classical situation: data

Classically, we have an unknown parameter k whose value we
wish to know and some data d pertaining to a set D at our
disposal. We never have direct access to systems or events
(whose properties are described by k ) but always to things or
systems through data. These data can be represented by the
position of the pointer of our measuring apparatus or simply by
the impulse our sensory system has received, or even by the
way we receive information about the position of the pointer
through our sensory system. It does not matter how long this
chain may be. The important point is a matter of principle: we
can receive information about objects and events only
conditionally from the data at our disposal.
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Classical extrapolation

Obviously, once we have observed or acquired data, we must
perform an information extrapolation that allows us to guess
about the value of the parameter k . This is information
selection. The probability that we select a response j having an
event represented by an unknown parameter k (i.e. the
probability that both event k and event j occur) is given by
p(j , k). Now, we may expand this probability by taking into
account the data d that are somehow the interface between the
source event k and our final selection event j :

p(j |k) =
∑
d∈D

p(j |d)p(d |k), (1)

where I have made use of a discrete case for the sake of
simplicity and we are summing over all the data d pertaining to
the set D.
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By inserting the last equation into the know classical equation
for the total probability we obtain:

p(j , k) =
∑
d∈D

p(j |d)p(d |k)p(k) =
∑
d∈D

p(j |d)p(d , k). (2)

Eq. (2) can be considered as a generalization of the well known
formula

p(j) =
∑
d∈D

p(j |d)p(d), (3)

and it reduces to the latter when p(k) = 1, i.e. when the event k
occurs with certainty.
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Faithfulness and Selection

It is important to stress that the two conditional probabilities
p(j |d) and p(d |k) are quite different. This can be seen formally
by the fact that in Eq. (1) we sum over the data d , which
represents the conditioned result relative to k on the one hand
and the condition for information extrapolation on the other.
This means that the probability p(d |k) represents how faithful
our data are relative to k , that is, how reliable our apparatus (or
our sensory system) is. Instead, the probability p(j |d)
represents our ability to select a single j able to interpret the
parameter in the best way.
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Bayesian probability

Probability (2) is Bayesian, since, by making use of the result

p(k |j) = p(j , k)
p(j)

, (4)

it is also true that

p(k |j) = p(k)
∑

d∈D p(j |d)p(d |k)
p(j)

= p(k)
p(j |k)
p(j)

. (5)

In other words, we can invert the kind of question we pose and
try to guess the unknown parameter k conditionally on having
detected j .
Now I shall show that the quantum case is not different.
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Preparation and Pre–measurement: Kets

I assume that the initial state of the apparatus is some
ready–state |A0〉 while the state of the object system is the
superposition

|ψ〉 =
∑

k

ck |k〉 . (6)

It is also in agreement with quantum mechanics to assume that
the entanglement between apparatus and object system
occurring during the pre–measurement step (at time t) is the
result of a unitary transformation (I indeed remind that only the
final step of selection or detection is not unitary):

Ût

(∑
k

ck |k〉 |A0〉

)
=
∑

k

ck |k〉 |ak 〉 . (7)
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Preparation and Pre–measurement: Matrices

We may describe the initial state of the object system and apparatus
in terms of the (initially factorized) density matrices:

ρ̂A = |A0〉 〈A0 | and ρ̂S = |ψ〉 〈ψ | . (8)

so that in matrix terms the pre–measurement stage can be described
as

ρ̂S ρ̂A 7→ Ût

(
ρ̂S ρ̂A

)
Û†t . (9)

To be easy, in the case of a bidimensional system (with components
m and n) we can write for the result of the pre measurement step:

Ût

(
ρ̂S ρ̂A

)
Û†t = |cm|2 |m,am〉 〈m,am |+ |cn|2 |n,an〉 〈n,an |

+cmc∗n |m,am〉 〈n,an|+ c∗mcn |n,an〉 〈m,am| . (10)

It is understood that |m〉 and |n〉 are the eigenstates of the observable
that is selected in the pre–measurement set–up.
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A–priori Probabilities

Just before the detection, the probability distribution to read the
value am of the apparatus observable will be simply given by

℘(am) = TrA
[
|am〉〈am|TrS

(
Ût ρ̂

S ρ̂AÛ†t
)]

= |cm|2 . (11)

We can prove this quite easily. Indeed, computation of the
partial trace

TrS
(

Ût ρ̂
S ρ̂AÛ†t

)
(12)

will kill all of the system’s states in (10). By applying the
projector P̂am = |am〉 〈am | to the previous result, we shall obtain

P̂am TrS
(

Ût ρ̂
S ρ̂AÛ†t

)
= |cm|2 |am〉 〈am | , (13)

and by finally tracing out the apparatus, we shall get the
probability, which, in our case, is |cm|2.
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Tracing out

Let us now apply to Eq. (11) the cyclic property of the trace,
which for any three arbitrary observables tells us

Tr
[
Ô1Ô2Ô3

]
= Tr

[
Ô3Ô1Ô2

]
= Tr

[
Ô2Ô3Ô1

]
, (14)

so that we obtain

TrA
[
|am〉〈am|TrS

(
Ût ρ̂

S ρ̂AÛ†t
)]

= TrA
[
TrS

(
Û†t |am〉〈am|Ût ρ̂

S ρ̂A
)]
.

(15)
The reason for the displacement of the projector P̂am is that the
partial trace on S (i.e. TrS) by definition does not act on the
apparatus. For the reason that this partial trace does not act on
ρ̂A, we can rewrite last equation as

TrA
[
TrS

(
Û†t |am〉〈am|Ût ρ̂

S ρ̂A
)]

= TrA
[
TrS

(
Û†t |am〉〈am|Ût ρ̂

S
)
ρ̂A
]
.

(16)
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Effects

The expression

TrS
(

Û†t |am〉〈am|Ût ρ̂
S
)
= Ê(am) (17)

is a projection-like operator that selects the outcome |am〉 but
does not satisfy the requirement of orthogonality that is typical
of projectors. Indeed, for any couple of projectors pertaining to
the same set (expressing kets of the same orthonormal set) we
have:

P̂j P̂k = P̂k P̂j = 0 . (18)

The operator Ê(am) is called effect and is the quintessence of
the Positive–Operator–Valued–Measure.
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POVM

Effects allow us to write the above probability (11) as

℘(am) = TrA
[
Ê(am)ρ̂

A
]
, (19)

which is formally similar to the traditional expression

℘(k) = Tr
[
P̂k ρ̂

]
. (20)

Note that the probability ℘(am) is a conditional one. Starting from the
definition (17), we compute now the effect explicitly:

Ê(am) = TrS
(

Û†t |am〉〈am|Ût ρ̂
S
)

=
〈
ψ
∣∣∣(Û†t |am〉〈am|Ût |ψ〉 〈ψ |

)∣∣∣ψ〉
=

〈
ψ
∣∣∣Û†t ∣∣∣am

〉〈
am

∣∣∣Ût

∣∣∣ψ〉
= ϑ̂†(am)ϑ̂(am). (21)
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Amplitude Operators

The expressions

ϑ̂(am) = 〈am|Ût |ψ〉 and ϑ̂†(am) =
〈
ψ
∣∣∣Û†t ∣∣∣ am

〉
. (22)

are not probability amplitudes because the involved unitary operators
represents the coupling of the apparatus and the system, whereas the above
ket and bra belong to system’s and the apparatus’ Hilbert space only,
respectively. Therefore they are operators. In particular, the amplitude
operator ϑ̂(am) describes all steps of the measurement of a given
observable:

Preparation of the initial state of the system (input |ψ〉),
Unitary evolution (coupling or premeasurement) of the apparatus
together with the object system (the bridge provided by Ût ), and
Detection by the apparatus (output 〈am|).

This fully corresponds to the classically case previous examined. In both
cases, we pass information from the past to the future through some current
connection.
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System and Apparatus

I assume that both the system S and the apparatus A are represented by two–level
systems. In particular, I choose the operator σ̂Sz for the observable of S and σ̂Ax for the
observable of the apparatus. The system S is initially prepared in a superposition of
the two eigenstates of σ̂Sz , which are the spin–up and the spin–down state,
respectively, given by

|↑〉S =

(
1
0

)
|↓〉S =

(
0
1

)
, (23)

so that
|ψ(0)〉S = c↑ |↑〉S + c↓ |↓〉S . (24)

The apparatus is initially in the z spin–down state

|φ(0)〉A = |↓〉A , (25)

so that if, after the interaction, the system is in |↓〉S , the state of A remains unchanged.
Otherwise, it will become |↑〉A. The interaction Hamiltonian can then be explicitly
written as

ĤSA = ε
(

1 + σ̂Sz

)
σ̂Ax , (26)

where ε is some coupling function.
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Eigekets

The first step we need to make in order to calculate the action of the unitary operator
Ût on the initial state |Ψ(0)〉SA, is to diagonalize the matrix ĤSM. The observable σ̂Sz
is already diagonal with respect to the basis states (23). In fact, we have

σ̂Sz |↑〉S = |↑〉S and σ̂Sz |↓〉S = − |↓〉S . (27)

On the other hand, the two eigenvalues of σ̂Ax are ±1 and the eigenkets are given by

|↑〉Ax =
1
√

2

(
1
1

)
and |↓〉Ax =

1
√

2

(
1
−1

)
, (28)

respectively. In terms of the z spin–up and spin–down states, these eigenkets are

|↑〉Ax =
1
√

2

(
|↑〉A + |↓〉A

)
, |↓〉Ax =

1
√

2

(
|↑〉A − |↓〉A

)
. (29)
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Evolving

Now, in order to find the time evolution of the quantum state of the compound system,
we only need to write its initial state in terms of the eigenkets (23) and (28) of ĤSA

|Ψ(t)〉SA = Ût |Ψ(0)〉SA
= e−

ı
~ tε(1+σ̂S

z )σ̂A
x
[(

c↑ |↑〉S + c↓ |↓〉S
)
|↓〉M

]
, (30)

where |Ψ(0)〉SA = |ψ(0)〉S |φ(0)〉A and Ût = e−
ı
~ tε(1+σ̂S

z )σ̂A
x . The action of the

Hamiltonian onto its eigenkets simply returns the corresponding eigenvalues.
Therefore, since

|↓〉A =
1
√

2

(
|↑〉Ax − |↓〉

A
x

)
, (31)

we have

|Ψ(t)〉SA =
1
√

2

(
c↑e−

2ı
~ tε |↑〉S |↑〉

A
x + c↓ |↓〉S |↑〉

A
x

−c↑e+ 2ı
~ tε |↑〉S |↓〉

A
x − c↓ |↓〉S |↓〉

A
x

)
, (32)

where the exponential e−
ı
~ tε(1+σ̂S

z )σ̂A
x is 1 when the eigenvalue of σ̂Sz is −1, i.e. for

the state |↓〉S .
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Fine–Tuning

Substituting expressions (29) into Eq. (32), we obtain

|Ψ(t)〉SA =
1
√

2

(
−c↑

2ı
√

2
sin

2tε
~
|↑〉S |↑〉A +

√
2c↓ |↓〉S |↓〉A

+c↑
2ı
√

2
cos

2tε
~
|↑〉S |↓〉A

)
. (33)

Choosing now

2tε
~

=
π

2
, or t =

π~
4ε

, (34)

i.e. by fine–tuning the interaction time, we finally obtain

|Ψ(t)〉SA = +c↓ |↓〉S |↓〉A − ıc↑ |↑〉S |↑〉A , (35)

which is the required coupling between the system and the meter.
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Matrices

This formalism can be easily translated in the density–matrix formalism above.:

ρ̂S = |ψ(0)〉S〈ψ(0)| and ρ̂A = |φ(0)〉A〈φ(0)| . (36)

The probability to get e.g. the spin-up state of the apparatus is:

℘(↑A) = TrA
[
|↑〉A〈↑|TrS

(
Ût ρ̂
S ρ̂AÛ†t

)]
= TrA

(
|↑〉A〈↑| |c↑|

2
)

= |c↑|2, (37)

whilst the relative effect is

Ê(↑A) = TrS
(

Û†t |↑〉A〈↑| Ût ρ̂
S
)

= S 〈ψ(0)|
(

Û†t |↑〉A〈↑| Ût |ψ(0)〉S〈ψ(0)|
)
|ψ(0)〉S

= S 〈ψ(0)| Û†t |↑〉A〈↑| Ût |ψ(0)〉S , (38)

where

ϑ̂† = S 〈ψ(0)| Û†t |↑〉A and ϑ̂ = A 〈↑| Ût |ψ(0)〉S . (39)
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Preparation

Let us now come back to the conceptual problems. The
preparation of the object system in a certain state is therefore
the first step. With such an operation we have ensured that
there is an initial source of variety. We do not need to assume
that at this stage we have already selected message (as it is
often thought in classical communication theory). Since the
same state can be selected by different preparation
procedures, we may operationally define the state as an
equivalence class of preparation procedures.
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Pre–measurement

Coupling between the object system and apparatus or
pre–measurement. The purpose of this operation is to select a
specific observable. Indeed, different observables (especially
non–commuting ones) require different experimental set-ups. It
is true that we can express the state of the two systems (i.e.
apparatus and object system) involved here in different bases
which correspond each time to a different observable (basis
degeneracy). However, we should not mix this mathematical
formalism with the operational issue connected with a selected
experimental set up. In the latter case, a change of observable
implies a change of set up too, what means a different kind of
pre–measurement. Since the same observable can be selected
through different pre–measurement set–ups, we can define the
observable as an equivalence class of pre–measurements.
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Detection

Finally, the detection event, thanks to the previous coupling and
the previous preparation, will allow us to assign a certain
property to the system. Events in themselves only happen and
it is only thanks to such a coupling (the chosen experimental
set up) that they are able to tell something about the object
system. Nevertheless, the specificity of any event is to
constitute the only irreversible step in the whole measurement
procedure. We can define a property as an equivalence class
of detections: thanks to quantum theory and given a certain
event we are able to assign a property. However, we are bale to
do that in presence of different detection events.
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Conclusion

The new challenge for the future is to understand how such a
formalism can help us to deal in new a generalized way with the
information exchanges in our universe.
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