

ATLAS EXPERIMENT Higgs Boson Searches with ATLAS

Kirill Prokofiev

NYU

on behalf of the

ATLAS Collaboration

ICFP 2012, KOLYMBARI, CRETE, GREECE, JUNE 10-16 2012

Outline

- ATLAS Detector
- Operation in 2010 and 2011
- Standard Model Higgs searches
- Standard Model Higgs combined result
- Searches beyond the Standard Model
- Summary

ATLAS detector overview

The Inner Detector provides around 3 pixel, 8 SCT and 30 TRT measurements per charged track at $\eta = 0$. Coverage: $|\eta| < 2.5$ (2.0 for TRT) Resolution goal: $\sigma_{pT}/p_T = 0.05\% p_T \oplus 1\%$

Muon spectrometer: high precision tracking and trigger chambers.
|η| coverage up to 2.7.
Magnetic field produced by 3x8 air-core toroids.

EM Calorimeter: ($|\eta|$ <4.9) Pb-LAr accordion structure provides e/ γ trigger, identification, measurement: $\sigma/E \sim 10\% VE$

Hadronic (Tile): provides trigger, jet measurement, E_T^{miss} $\sigma/E \sim 50\% VE \oplus 0.03$. ($|\eta| < 1.7$)

Data taking in 2010 and 2011

		Delivered	Recorded
рр	2010	48.1 pb ⁻¹	45.0 pb ⁻¹
рр	2011	5.61 fb ⁻¹	5.25 pb ⁻¹

- Higgs mechanism: most probable mechanism for the electroweak symmetry breaking. Used both in the Standard Model and theories beyond.
- In the Standard Model, the vector bosons and the fermions acquire mass via coupling to the Higgs field.
- Physical manifestation of the Higgs field in the Standard Model: scalar Higgs boson.
- Theories beyond the Standard Model often require presence of several Higgs bosons.
- Presently, the Higgs boson is the missing part of the Standard Model. No evidence for Higgses predicted by other theories is found either.

LEP: m_H>114.4 GeV.

Tevatron: exclusion of 147< m_H<179 GeV region.

Indirect limits come from the precision measurements of electroweak observables.

Standard Model Higgs searches

Considered search channels

- For the Standard Model Higgs searches, ATLAS uses a variety of final states . The final result is the combination of all considered modes.
- Search performed in the range $m_H = 110 600$ GeV.
- High mass Higgs search: $ZZ \rightarrow IIqq$, $ZZ \rightarrow IIvv$, $WW \rightarrow Ivqq$.

Standard Model Higgs searches in the high mass region (200-600 GeV)

$H \rightarrow ZZ \rightarrow ll \nu \nu$

- Most sensitive channel in the high mass range: high BR and clean signature.
- Pile-up dependent due to the E_T^{miss}.
- Separate analyses for m_H<280 and m_H≥280 GeV: different cuts for E_T^{miss} and Δφ(II).
- Background normalization:
 - ZZ, WW: Monte Carlo.
 - WZ: Monte Carlo verified in 3-lepton control region in data.
 - Top: Monte Carlo verified in eµ and m₁ sidebands + b-tag.
 - Inclusive W: same sign ee and eµ pairs.
 - Inclusive Z: Inverted $\Delta \phi(p_T^{miss}, p_T^{jet})$
- No significant excess observed.
- Observed (expected) exclusion in the region 319 - 558 GeV (280 - 497 GeV).

arXiv:1205.6744v1

٠

 $H \rightarrow ZZ \rightarrow llq\bar{q}$

- Using m_{IIjj} as discriminating variable.
- Separate analyses for m_H<300 and m_H≥300 GeV. Higher mass Higgses produce Z's with significant momenta: special angular treatment allows better background rejection (Z+jets).
- Further split into <2 b-tags and 2 btags selections.
- Z+jet: shape from MC, normalization from data (m_{jj} sidebands).
- No significant excess in the whole mass region.
- Observed (expected) exclusion in the mass region: 300<m_H<310 GeV and 360<m_H<400 GeV (360<m_H<400 GeV).

$H \rightarrow WW \rightarrow l\nu q \overline{q}$

•

•

- No significant excesses in the full mass range.
- Best sensitivity obtained at 400 GeV for combination of H+0 and H+1 jet channels.
- Here an upper limit on the H->WW cross section of 2.6 pb (2.2×SM) is set. Expected: 2.2 pb (1.7×SM).

- One neutrino full mass reconstruction possible.
- Separate analyses for H + 0, 1(ggF), 2 (VBF) jets.
- M(lv)=M(W) constraint for mass reconstruction.
- Backgrounds: W+jets, Z+jets, diboson,ttbar, etc.
- Backgrounds: from fit to the m(lvjj) spectrum. Shape taken from Monte Carlo studies, tested on m_{ii} sidebands.

Standard Model Higgs searches in the low mass region

 $H \rightarrow \gamma \gamma$

- Using 4.9 fb⁻¹.
- Separate analyses for 9 photon categories of resolution, defined according to η, (un)conversion status and di-photon momentum component transverse to thrust axis.
- E_T(γ₁)>40 GeV; E_T(γ₂)>25GeV.
- Calorimeter isolation of 5 GeV in $\Delta R < 0.4$ around reconstructed photons.

- Background estimated from the fit to the m_w distribution:
 - Simultaneous fit for all 9 categories.
 - Exponential model.

95% CL limit on σ/σ_{SM}

3

2

110

- Local significance 2.8 standard deviations. ٠
- Global significance (look elsewhere effect accounted • for): 1.5 standard deviations for m_{H} =110-150 GeV.
- Observed exclusion: 113-115 GeV and • 134.5-136 GeV.

Expected (observed) exclusion in the full mass range: ٠ between 1.6 and 2.7× σ_{SM} (0.83 and 3.6× σ_{SM}).

900

800

ed diphoton sample

Data 2011

 $H \rightarrow \gamma \gamma$

 $H \rightarrow ZZ^{(*)} \rightarrow llll$

- Golden discovery channel: clean signature with low background.
- Four event categories: eeee, eeμμ, μμee, μμμμ.
- Search in the range 110 GeV to 600 GeV.
- Main backgrounds: ZZ (irreducible), tt, Zbb, Z+jets.

 $H \rightarrow ZZ^{(*)} \rightarrow llll$

• Background estimation.

- ZZ^(*): from simulation.
- Z+jets, Zbb: using control regions without applying the charge, isolation and impact parameter requirements on the second lepton pair.
- ttbar: control region with opposite-sign electron-muon pairs consistent with the Z boson mass and two additional same-flavor leptons.

- Deviations from background expectation at: 125, 244 and 500 GeV.
- Local significances: 2.1σ, 2.2σ, 2.1σ respectively.
- Observed exclusion: 134 – 156 GeV, 182 – 233 GeV, 256 – 265 GeV and 268 – 415 GeV.
- Expected exclusion: 137 – 158 GeV and 185 – 400 GeV.

ICFP 2012, Kolymbari, Greece, June 10-16 2012

 $H \rightarrow ZZ^{(*)} \rightarrow llll$

- p₀ values for observed excesses:
- m_H = 125 GeV: p₀ = 1.8%
- m_H = 244 GeV: p₀ = 1.1%
- m_H = 500 GeV: p₀=1.4%.
- Once the look-elsewhere effect is considered, none of these excesses is significant by itself.

$H \rightarrow WW \rightarrow l\nu l\nu$

- Sensitive in the range 110 GeV to 600 GeV •
- Most sensitive in the range 120 GeV to 180 GeV. •
- Three channels are combined: $\mu v_{\mu} \mu v_{\mu}$, $e v_e \mu v_{\mu'}$, $e v_e e v_e$. •
- Uses m_T as discriminating variable: full mass reconstruction is not possible. •
- Analysis: 2 oppositely charged leptons, MET, Z-veto, m_{\parallel} and $\Delta \phi_{\parallel}$ cuts. •
- Jet multiplicity: 0,1,2 (VBF): different background compositions and cuts. •

$H \rightarrow WW \rightarrow l\nu l\nu$

• First ATLAS Higgs analysis using multivariate techniques. Matrix Element and Boosted Decision Tree (BDT) used. BDT trained on four kinematic variables: m_{II} , p_T^{II} , m_T , $\Delta \varphi_{II}$.

- Searches in $H \rightarrow \tau + \tau \rightarrow II4\nu$, $I\tau^{had}3\nu$ and $\tau^{had}\tau^{had}\nu\nu$ channels.
- Using jets to enhance the S/B separation: categorized to 0,1-jet (VH) and 2jet (VBF) channels.
- $H \rightarrow \tau \tau \rightarrow ||4v|$: collinear mass approximation in the 1 and 2 jet channels, effective mass for 0 jets.
- $H \rightarrow \tau \tau \rightarrow I \tau^{had} 3 v$: missing mass calculator.
- $H \rightarrow \tau \tau \rightarrow \tau^{had} \tau^{had} 2\nu$: collinear mass approximation.
- No significant excesses are seen in the combined full mass range.
- Expected (observed) upper limits:
 2.5 (3.2) and 11.9 (7.9)×σ_{SM}.

- The individual Standard Model Higgs search channels are combined.
- Expected exclusion range in the absence of signal: 120 to 555 GeV.
- Observed exclusion for the Standard Model Higgs at 95% CL: 110.0 GeV to 117.5 GeV, 118.5 GeV to 122.5 GeV, and 129 GeV to 539 GeV.
- Observed exclusion at 99% CL: 130 GeV to 486 GeV.
- An excess is observed around m_{H}^{-126} GeV with a local significance of 2.5 σ .

SM Combination

- Expected significance for SM Higgs boson for that mass hypothesis: 2.9σ.
- The global probability for such an excess in mass range 110-600 GeV: 30%.
- For 110-146 GeV range: 10%.

m_µ [GeV]

Beyond the Standard Model Higgs searches

- Fermiophobic Higgs to two photons.
- MSSM Neutral Higgses.
- MSSM Charged Higgses.

Fermiophobic Higgs

- Decreased couplings to some or all fermions in two Higgs doublet and triplet models.
- Production: Vector Boson Fusion or associated production (VH).
- **Decays:** WW, ZZ, Zγ, γγ.
- Excluded below 119 GeV by LEP and Tevatron.

Fermiophobic $H \rightarrow \gamma \gamma$

- 4.9 fb⁻¹. Benchmark model: all Higgs-fermion couplings are set to 0; SM values kept for boson couplings.
- Same analysis as for the Standard Model Higgs di-photon searches: 9 event categories + separate treatment for high and low P_{Tt}.
- Signal model: Crystal Ball + Gaussian.
- Expected exclusion: 110 123.5 GeV; Observed exclusion: 110 118.0 GeV and 119.5 – 121 GeV.
- Largest excess: at 125.5 GeV, with a local significance of 2.9 σ (1.6 σ accounting for look elsewhere effect).

MSSM Higgses

- Minimal Supersymmetric extension of the Standard Model.
- Two Higgs doublets; 5 physical Higgs bosons: H,h,A,H[±]
- Free parameters at tree level: m_A , $tan\beta = v_u/v_d$
- SM Higgs (m_H >140 GeV): WW and ZZ are dominant decays.
- MSSM Higgs: enhanced couplings to 3d generation down-type fermions.

Neutral MSSM Higgs searches

Ŷ

- Searches in the ττ decay mode. (1.06 fb⁻¹)
- $e\mu 4v$, $e\tau_{had} 3v$, $\mu \tau_{had} 3v$, and $\tau_{had} \tau_{had} 2v$ final states are considered.
- Similar to the SM search, effective mass for II searches, MMC for $I\tau_{had}$ searches, visible mass for $\tau_{had}\tau_{had}$ used.
- Backgrounds mostly data-driven methods.

Charged MSSM Higgs searches

page 32

- Searches in the $\tau^+\nu$ decay mode. (4.6 fb⁻¹). Selecting tt events with τ lepton in the final state. Considering both hadronic and leptonic τ decays.
 - − lepton+jets: tt → bb W H⁺ → bb (qq) (τ_{lep} v),
 - τ+lepton: tt → bb W H⁺ → b b (lv) (τ_{had}v),
 - τ+jets: tt → bb W H⁺ → bb (qq) (τ_{had}ν).
- Special set of discriminating variables for each final state.
- Main backgrounds: tt(Monte Carlo), Z/γ+jets, W+jets, multijet (data-driven).

ATLAS-CONF-2012-011 arXiv:1204.2760

•

•

Summary

- In the year 2011 ATLAS was searching for the Higgs boson in variety of final states. Both Standard Model and beyond hypotheses are tested.
- Standard Model
 - Searches in several channels with 4.7 fb⁻¹ to 4.9 fb⁻¹.
 - Few individual excesses observed in 2 photon, 4 leptons final states.
 - The overall combination of search channels is performed.
 - Expected exclusion range in the absence of signal: 120 GeV to 555 GeV.
 - Observed exclusion for the Standard Model Higgs at 95% CL: 110.0 GeV to 117.5 GeV, 118.5 GeV to 122.5 GeV, and 129 GeV to 539 GeV.
 - An excess is observed around m_{H}^{2} 126 GeV with a local significance of 2.5 σ .
- Beyond the Standard Model
 - Searches in several models including fermiophobic and MSSM Higgses.
 - In fermiophobic model, a small excess is observed at the same place as in the Standard Model search.
 - Neutral and charged MSSM Higgses were searched for in channels containing τ leptons in the final state. Upper limits on their production cross-section are set.

Backup

Backup

